On the geometry of simply connected wandering domains

被引:7
|
作者
Thaler, Luka Boc [1 ,2 ]
机构
[1] Univ Ljubljana, Fac Educ, Kardeljeva Ploscad 16, Ljubljana 1000, Slovenia
[2] Inst Math Phys & Mech, Jandranska 19, Ljubljana 1000, Slovenia
关键词
30D05; 37F10; 30D20 (primary); EXAMPLES;
D O I
10.1112/blms.12518
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the geometry of simply connected wandering domains for entire functions and we prove that every bounded connected regular open set, whose closure has a connected complement, is a wandering domain of some entire function. In particular such a domain can be realized as an escaping or an oscillating wandering domain. As a consequence, we obtain that every Jordan curve is the boundary of a wandering Fatou component of some entire function.
引用
收藏
页码:1663 / 1673
页数:11
相关论文
共 50 条
  • [1] Classifying simply connected wandering domains
    Anna Miriam Benini
    Vasiliki Evdoridou
    Núria Fagella
    Philip J. Rippon
    Gwyneth M. Stallard
    [J]. Mathematische Annalen, 2022, 383 : 1127 - 1178
  • [2] Oscillating simply connected wandering domains
    Evdoridou, Vasiliki
    Rippon, Philip J.
    Stallard, Gwyneth M.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (04) : 1239 - 1268
  • [3] Classifying simply connected wandering domains
    Benini, Anna Miriam
    Evdoridou, Vasiliki
    Fagella, Nuria
    Rippon, Philip J.
    Stallard, Gwyneth M.
    [J]. MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 1127 - 1178
  • [4] An Entire Function with Simply and Multiply Connected Wandering Domains
    Bergweiler, Walter
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2011, 7 (01) : 107 - 120
  • [5] Conformal Invariants in Simply Connected Domains
    Nasser, Mohamed M. S.
    Vuorinen, Matti
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2020, 20 (3-4) : 747 - 775
  • [6] Carleson measures on simply connected domains
    Gonzalez, Maria J.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (02)
  • [7] Conformal Invariants in Simply Connected Domains
    Mohamed M. S. Nasser
    Matti Vuorinen
    [J]. Computational Methods and Function Theory, 2020, 20 : 747 - 775
  • [8] Bergman projection on simply connected domains
    Taskinen, J
    [J]. RECENT PROGRESS IN FUNCTIONAL ANALYSIS, 2001, 189 : 255 - 261
  • [9] On multiply connected wandering domains of meromorphic functions
    Rippon, P. J.
    Stallard, G. M.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 : 405 - 423
  • [10] Multiply connected wandering domains of entire functions
    Bergweiler, Walter
    Rippon, Philip J.
    Stallard, Gwyneth M.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 : 1261 - 1301