The flashfm approach for fine-mapping multiple quantitative traits

被引:8
|
作者
Hernandez, N. [1 ]
Soenksen, J. [2 ,3 ]
Newcombe, P. [1 ]
Sandhu, M. [4 ]
Barroso, I [2 ]
Wallace, C. [1 ,5 ]
Asimit, J. L. [1 ]
机构
[1] Univ Cambridge, MRC Biostat Unit, Cambridge, England
[2] Univ Exeter Med Sch, Exeter Ctr Excellence Diabet Res EXCEED, Exeter, Devon, England
[3] Univ Glasgow, Sch Life Sci, Glasgow, Lanark, Scotland
[4] Imperial Coll London, Sch Publ Hlth, Dept Epidemiol & Biostat, London, England
[5] Univ Cambridge, Cambridge Inst Therapeut Immunol & Infect Dis CIT, Cambridge, England
基金
英国惠康基金;
关键词
MIXED-MODEL ANALYSIS; CAUSAL VARIANTS; GENOME; RESOURCE; DISEASES;
D O I
10.1038/s41467-021-26364-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Joint fine-mapping that leverages information between quantitative traits could improve accuracy and resolution over single-trait fine-mapping. Using summary statistics, flashfm (flexible and shared information fine-mapping) fine-maps signals for multiple traits, allowing for missing trait measurements and use of related individuals. In a Bayesian framework, prior model probabilities are formulated to favour model combinations that share causal variants to capitalise on information between traits. Simulation studies demonstrate that both approaches produce broadly equivalent results when traits have no shared causal variants. When traits share at least one causal variant, flashfm reduces the number of potential causal variants by 30% compared with single-trait fine-mapping. In a Ugandan cohort with 33 cardiometabolic traits, flashfm gave a 20% reduction in the total number of potential causal variants from single-trait fine-mapping. Here we show flashfm is computationally efficient and can easily be deployed across publicly available summary statistics for signals in up to six traits. Genetic signals from quantitative traits could be a challenge to finemap. Flashfm uses summary-level data in a Bayesian framework to favour shared causal variants and capitalises on information between traits, providing an accurate and efficient joint fine-mapping tool for up to six traits.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] The flashfm approach for fine-mapping multiple quantitative traits
    N. Hernández
    J. Soenksen
    P. Newcombe
    M. Sandhu
    I. Barroso
    C. Wallace
    J. L. Asimit
    [J]. Nature Communications, 12
  • [2] Flashfm-ivis: interactive visualisation for fine-mapping of multiple quantitative traits
    Zhou, Feng
    Butterworth, Adam S.
    Asimit, Jennifer L.
    [J]. HUMAN HEREDITY, 2022, VOL. (SUPPL 1) : 21 - 21
  • [3] Flashfm-ivis: interactive visualization for fine-mapping of multiple quantitative traits
    Zhou, Feng
    Butterworth, Adam S.
    Asimit, Jennifer L.
    [J]. BIOINFORMATICS, 2022, 38 (17) : 4238 - 4242
  • [4] A Flexible and Shared Information Bayesian Joint Fine-Mapping Approach for Multiple Quantitative Traits
    Hernandez, N.
    Newcombe, P.
    Sandhu, M.
    Wallace, C.
    Asimit, J.
    [J]. HUMAN HEREDITY, 2020, 84 (4-5) : 205 - 205
  • [5] Leveraging multiple ancestries and traits improves fine-mapping accuracy
    Zhou, Feng
    Soremekun, Opeyemi
    Chikowore, Tinashe
    Fatumo, Segun
    Barroso, Ines
    Morris, Andrew
    Asimit, Jennifer
    [J]. HUMAN HEREDITY, 2023, 88 (SUPPL 1) : 6 - 6
  • [6] Strategies for fine-mapping complex traits
    Spain, Sarah L.
    Barrett, Jeffrey C.
    [J]. HUMAN MOLECULAR GENETICS, 2015, 24 : R111 - R119
  • [7] Limits of fine-mapping a quantitative trait
    Atwood, LD
    Heard-Costa, NL
    [J]. GENETIC EPIDEMIOLOGY, 2003, 24 (02) : 99 - 106
  • [8] A Novel Multiple-SNP Approach for Fine-Mapping Studies
    Xu, Jingxiong J. X.
    Ozcelik, Hilmi H. O.
    Kwiatkowski, Maciej M. K.
    Bapat, Bharati B. B.
    Diamandis, Eleftherios E. P. D.
    Zlotta, Alexandre A. R. Z.
    Briollais, Laurent L. B.
    [J]. GENETIC EPIDEMIOLOGY, 2015, 39 (07) : 595 - 595
  • [9] Leveraging information between multiple population groups and traits improves fine-mapping resolution
    Zhou F.
    Soremekun O.
    Chikowore T.
    Fatumo S.
    Barroso I.
    Morris A.P.
    Asimit J.L.
    [J]. Nature Communications, 14 (1)
  • [10] Leveraging Information across Multiple Related Glycaemic Traits Improves Fine-Mapping Resolution
    Soenksen, Jana
    Chen, Ji
    Asimit, Jennifer L.
    Magic
    Barroso, Ines
    [J]. DIABETES, 2021, 70