The flashfm approach for fine-mapping multiple quantitative traits

被引:8
|
作者
Hernandez, N. [1 ]
Soenksen, J. [2 ,3 ]
Newcombe, P. [1 ]
Sandhu, M. [4 ]
Barroso, I [2 ]
Wallace, C. [1 ,5 ]
Asimit, J. L. [1 ]
机构
[1] Univ Cambridge, MRC Biostat Unit, Cambridge, England
[2] Univ Exeter Med Sch, Exeter Ctr Excellence Diabet Res EXCEED, Exeter, Devon, England
[3] Univ Glasgow, Sch Life Sci, Glasgow, Lanark, Scotland
[4] Imperial Coll London, Sch Publ Hlth, Dept Epidemiol & Biostat, London, England
[5] Univ Cambridge, Cambridge Inst Therapeut Immunol & Infect Dis CIT, Cambridge, England
基金
英国惠康基金;
关键词
MIXED-MODEL ANALYSIS; CAUSAL VARIANTS; GENOME; RESOURCE; DISEASES;
D O I
10.1038/s41467-021-26364-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Joint fine-mapping that leverages information between quantitative traits could improve accuracy and resolution over single-trait fine-mapping. Using summary statistics, flashfm (flexible and shared information fine-mapping) fine-maps signals for multiple traits, allowing for missing trait measurements and use of related individuals. In a Bayesian framework, prior model probabilities are formulated to favour model combinations that share causal variants to capitalise on information between traits. Simulation studies demonstrate that both approaches produce broadly equivalent results when traits have no shared causal variants. When traits share at least one causal variant, flashfm reduces the number of potential causal variants by 30% compared with single-trait fine-mapping. In a Ugandan cohort with 33 cardiometabolic traits, flashfm gave a 20% reduction in the total number of potential causal variants from single-trait fine-mapping. Here we show flashfm is computationally efficient and can easily be deployed across publicly available summary statistics for signals in up to six traits. Genetic signals from quantitative traits could be a challenge to finemap. Flashfm uses summary-level data in a Bayesian framework to favour shared causal variants and capitalises on information between traits, providing an accurate and efficient joint fine-mapping tool for up to six traits.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Fine-mapping of coccidia-resistant quantitative trait loci in chickens
    Kim, E. -S.
    Hong, Y. H.
    Min, W.
    Lillehoj, H. S.
    [J]. POULTRY SCIENCE, 2006, 85 (11) : 2028 - 2030
  • [22] Fine-mapping genetic associations
    Hutchinson, Anna
    Asimit, Jennifer
    Wallace, Chris
    [J]. HUMAN MOLECULAR GENETICS, 2020, 29 (R1) : R82 - R89
  • [23] Fine-mapping of a quantitative trait locus affecting skeletal size in mice
    Christians, JK
    Bingham, V
    Mcdonald, K
    Keightley, PD
    [J]. GENETICAL RESEARCH, 2003, 81 (03) : 232 - 232
  • [24] Fine-mapping quantitative trait loci for body weight and abdominal fat traits: Effects of marker density and sample size
    Liu, X.
    Zhang, H.
    Li, H.
    Li, N.
    Zhang, Y.
    Zhang, Q.
    Wang, S.
    Wang, Q.
    Wang, H.
    [J]. POULTRY SCIENCE, 2008, 87 (07) : 1314 - 1319
  • [25] Design of experiments for fine-mapping quantitative trait loci in livestock populations
    Dörte Wittenburg
    Sarah Bonk
    Michael Doschoris
    Henry Reyer
    [J]. BMC Genetics, 21
  • [26] Replication and fine-mapping of genetic predictors of lipid traits in African-Americans
    Feng, QiPing
    Wei, Wei-Qi
    Levinson, Rebecca T.
    Mosley, Jonathan D.
    Stein, C. Michael
    [J]. JOURNAL OF HUMAN GENETICS, 2017, 62 (10) : 895 - 901
  • [27] Design of experiments for fine-mapping quantitative trait loci in livestock populations
    Wittenburg, Doerte
    Bonk, Sarah
    Doschoris, Michael
    Reyer, Henry
    [J]. BMC GENETICS, 2020, 21 (01)
  • [28] Fine-mapping of quantitative trait loci for body weight and bone traits and positional cloning of the RB1 gene in chicken
    Zhang, H.
    Liu, S. H.
    Zhang, Q.
    Zhang, Y. D.
    Wang, S. Z.
    Wang, Q. G.
    Wang, Y. X.
    Tang, Z. Q.
    Li, H.
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2011, 128 (05) : 366 - 375
  • [29] Some properties of a variance components model for fine-mapping quantitative trait loci
    Cardon, LR
    Abecasis, GR
    [J]. BEHAVIOR GENETICS, 2000, 30 (03) : 235 - 243
  • [30] Genetic Fine-Mapping and Identification of Candidate Genes and Variants for Adiposity Traits in Outbred Rats
    Keele, Gregory R.
    Prokop, Jeremy W.
    He, Hong
    Holl, Katie
    Littrell, John
    Deal, Aaron
    Francic, Sanja
    Cui, Leilei
    Gatti, Daniel M.
    Broman, Karl W.
    Tschannen, Michael
    Tsaih, Shirng-Wern
    Zagloul, Maie
    Kim, Yunjung
    Baur, Brittany
    Fox, Joseph
    Robinson, Melanie
    Levy, Shawn
    Flister, Michael J.
    Mott, Richard
    Valdar, William
    Woods, Leah C. Solberg
    [J]. OBESITY, 2018, 26 (01) : 213 - 222