The flashfm approach for fine-mapping multiple quantitative traits

被引:8
|
作者
Hernandez, N. [1 ]
Soenksen, J. [2 ,3 ]
Newcombe, P. [1 ]
Sandhu, M. [4 ]
Barroso, I [2 ]
Wallace, C. [1 ,5 ]
Asimit, J. L. [1 ]
机构
[1] Univ Cambridge, MRC Biostat Unit, Cambridge, England
[2] Univ Exeter Med Sch, Exeter Ctr Excellence Diabet Res EXCEED, Exeter, Devon, England
[3] Univ Glasgow, Sch Life Sci, Glasgow, Lanark, Scotland
[4] Imperial Coll London, Sch Publ Hlth, Dept Epidemiol & Biostat, London, England
[5] Univ Cambridge, Cambridge Inst Therapeut Immunol & Infect Dis CIT, Cambridge, England
基金
英国惠康基金;
关键词
MIXED-MODEL ANALYSIS; CAUSAL VARIANTS; GENOME; RESOURCE; DISEASES;
D O I
10.1038/s41467-021-26364-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Joint fine-mapping that leverages information between quantitative traits could improve accuracy and resolution over single-trait fine-mapping. Using summary statistics, flashfm (flexible and shared information fine-mapping) fine-maps signals for multiple traits, allowing for missing trait measurements and use of related individuals. In a Bayesian framework, prior model probabilities are formulated to favour model combinations that share causal variants to capitalise on information between traits. Simulation studies demonstrate that both approaches produce broadly equivalent results when traits have no shared causal variants. When traits share at least one causal variant, flashfm reduces the number of potential causal variants by 30% compared with single-trait fine-mapping. In a Ugandan cohort with 33 cardiometabolic traits, flashfm gave a 20% reduction in the total number of potential causal variants from single-trait fine-mapping. Here we show flashfm is computationally efficient and can easily be deployed across publicly available summary statistics for signals in up to six traits. Genetic signals from quantitative traits could be a challenge to finemap. Flashfm uses summary-level data in a Bayesian framework to favour shared causal variants and capitalises on information between traits, providing an accurate and efficient joint fine-mapping tool for up to six traits.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Fine-mapping the genetic basis of CRP regulation in African Americans: a Bayesian approach
    Benjamin Rhodes
    David L. Morris
    Lakshman Subrahmanyan
    Cristin Aubin
    Carlos F. Mendes de Leon
    Jeremiah F. Kelly
    Dennis A. Evans
    John C. Whittaker
    Jorge R. Oksenberg
    Philip L. De Jager
    Tim J. Vyse
    [J]. Human Genetics, 2008, 123 : 633 - 642
  • [42] Fine-mapping the genetic basis of CRP regulation in African Americans: a Bayesian approach
    Rhodes, Benjamin
    Morris, David L.
    Subrahmanyan, Lakshman
    Aubin, Cristin
    de Leon, Carlos F. Mendes
    Kelly, Jeremiah F.
    Evans, Dennis A.
    Whittaker, John C.
    Oksenberg, Jorge R.
    De Jager, Philip L.
    Vyse, Tim J.
    [J]. HUMAN GENETICS, 2008, 123 (06) : 633 - 642
  • [43] Improving fine-mapping by modeling infinitesimal effects
    Ran Cui
    Roy A. Elzur
    Masahiro Kanai
    Jacob C. Ulirsch
    Omer Weissbrod
    Mark J. Daly
    Benjamin M. Neale
    Zhou Fan
    Hilary K. Finucane
    [J]. Nature Genetics, 2024, 56 : 162 - 169
  • [44] Methods for fine-mapping with chromatin and expression data
    Roytman, Megan
    Kichaev, Gleb
    Gusev, Alexander
    Pasaniuc, Bogdan
    [J]. PLOS GENETICS, 2018, 14 (02):
  • [45] Mapping Multiple Quantitative Trait Loci for Ordinal Traits
    Nengjun Yi
    Shizhong Xu
    Varghese George
    David B. Allison
    [J]. Behavior Genetics, 2004, 34 : 3 - 15
  • [46] Bayesian quantitative trait loci mapping for multiple traits
    Banerjee, Samprit
    Yandell, Brian S.
    Yi, Nengjun
    [J]. GENETICS, 2008, 179 (04) : 2275 - 2289
  • [47] Invited abstract: Multiethnic GWAS and fine-mapping
    Conti, David V.
    [J]. GENETIC EPIDEMIOLOGY, 2018, 42 (07) : 693 - 693
  • [48] Mapping multiple quantitative trait loci for ordinal traits
    Yi, NJ
    Xu, SZ
    George, V
    Allison, DB
    [J]. BEHAVIOR GENETICS, 2004, 34 (01) : 3 - 15
  • [49] ANNORE: genetic fine-mapping with functional annotation
    Fisher, Virginia
    Sebastiani, Paola
    Cupples, L. Adrienne
    Liu, Ching-Ti
    [J]. HUMAN MOLECULAR GENETICS, 2022, 31 (01) : 32 - 40
  • [50] Fine-mapping of the PARK10 locus
    Haugarvoll, K
    Toft, M
    Aasly, JO
    Farrer, MJ
    [J]. NEUROLOGY, 2006, 66 (05) : A143 - A143