Isoseparation and robustness in parametric Bayesian inference

被引:1
|
作者
Smith, Jim Q. [1 ]
Rigat, Fabio [1 ,2 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[2] Novartis Vaccines & Diagnost, Siena, Italy
关键词
Density ratio class; Hierarchical Bayesian inference; Local robustness; Total variation; Power steady model; Diabetes mellitus;
D O I
10.1007/s10463-011-0334-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a new family of local density separations for assessing robustness of finite-dimensional Bayesian posterior inferences with respect to their priors. Unlike for their global equivalents, under these novel separations posterior robustness is recovered even when the functioning posterior converges to a defective distribution, irrespectively of whether the prior densities are grossly misspecified and of the form and the validity of the assumed data sampling distribution. For exponential family models, the local density separations are shown to form the basis of a weak topology closely linked to the Euclidean metric on the natural parameters. In general, the local separations are shown to measure relative roughness of the prior distribution with respect to its corresponding posterior and provide explicit bounds for the total variation distance between an approximating posterior density to a genuine posterior. We illustrate the application of these bounds for assessing robustness of the posterior inferences for a dynamic time series model of blood glucose concentration in diabetes mellitus patients with respect to alternative prior specifications.
引用
收藏
页码:495 / 519
页数:25
相关论文
共 50 条
  • [21] Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method
    Koskela, Jere
    Jenkins, Paul A.
    Spano, Dario
    BERNOULLI, 2018, 24 (03) : 2122 - 2153
  • [22] A Variational Bayesian inference method for parametric imaging of PET data
    Castellaro, M.
    Rizzo, G.
    Tonietto, M.
    Veronese, M.
    Turkheimer, F. E.
    Chappell, M. A.
    Bertoldo, A.
    NEUROIMAGE, 2017, 150 : 136 - 149
  • [23] Non-parametric Bayesian inference of strategies in repeated games
    Kleiman-Weiner, Max
    Tenenbaum, Joshua B.
    Zhou, Penghui
    ECONOMETRICS JOURNAL, 2018, 21 (03): : 298 - 315
  • [24] A note on Bayesian and frequentist parametric inference for a scalar parameter of interest
    Wong, A. C. M.
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (01) : 414 - 421
  • [25] Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data
    Faes, C.
    Ormerod, J. T.
    Wand, M. P.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (495) : 959 - 971
  • [26] Exploring the robustness of Bayesian and information-theoretic methods for predictive inference
    Kontkanen, P
    Myllymäki, P
    Silander, T
    Tirri, H
    Valtonen, K
    ARTIFICIAL INTELLIGENCE AND STATISTICS 99, PROCEEDINGS, 1999, : 231 - 236
  • [27] Sample size calculations for ROC studies: parametric robustness and Bayesian nonparametrics
    Cheng, Dunlei
    Branscum, Adam J.
    Johnson, Wesley O.
    STATISTICS IN MEDICINE, 2012, 31 (02) : 131 - 142
  • [28] On priors providing frequentist validity of Bayesian inference for multiple parametric functions
    Datta, GS
    BIOMETRIKA, 1996, 83 (02) : 287 - 298
  • [29] Bayesian inference for longitudinal data with non-parametric treatment effects
    Mueller, Peter
    Quintana, Fernando A.
    Rosner, Gary L.
    Maitland, Michael L.
    BIOSTATISTICS, 2014, 15 (02) : 341 - 352
  • [30] BAYESIAN-INFERENCE OF BINARY REGRESSION-MODELS WITH PARAMETRIC LINK
    CZADO, C
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 41 (02) : 121 - 140