Isoseparation and robustness in parametric Bayesian inference

被引:1
|
作者
Smith, Jim Q. [1 ]
Rigat, Fabio [1 ,2 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[2] Novartis Vaccines & Diagnost, Siena, Italy
关键词
Density ratio class; Hierarchical Bayesian inference; Local robustness; Total variation; Power steady model; Diabetes mellitus;
D O I
10.1007/s10463-011-0334-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a new family of local density separations for assessing robustness of finite-dimensional Bayesian posterior inferences with respect to their priors. Unlike for their global equivalents, under these novel separations posterior robustness is recovered even when the functioning posterior converges to a defective distribution, irrespectively of whether the prior densities are grossly misspecified and of the form and the validity of the assumed data sampling distribution. For exponential family models, the local density separations are shown to form the basis of a weak topology closely linked to the Euclidean metric on the natural parameters. In general, the local separations are shown to measure relative roughness of the prior distribution with respect to its corresponding posterior and provide explicit bounds for the total variation distance between an approximating posterior density to a genuine posterior. We illustrate the application of these bounds for assessing robustness of the posterior inferences for a dynamic time series model of blood glucose concentration in diabetes mellitus patients with respect to alternative prior specifications.
引用
收藏
页码:495 / 519
页数:25
相关论文
共 50 条
  • [41] Bayesian Inference for Spatial Parametric Proportional Hazards Model Using Spatsurv R
    Thamrin, Sri Astuti
    Amran
    Jaya, Andi Kresna
    Rahmi, Sulvirah
    Ansariadi
    STATISTICS AND ITS APPLICATIONS, 2017, 1827
  • [42] Semi-parametric Bayesian Inference for Multi-Season Baseball Data
    Quintana, Fernando A.
    Mueller, Peter
    Rosner, Gary L.
    Munsell, Mark
    BAYESIAN ANALYSIS, 2008, 3 (02): : 317 - 338
  • [43] Distributed MCMC Inference for Bayesian Non-parametric Latent Block Model
    Khoufache, Reda
    Belhadj, Anisse
    Azzag, Hanene
    Lebbah, Mustapha
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I, PAKDD 2024, 2024, 14645 : 271 - 283
  • [44] Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations
    Chaspari, Theodora
    Tsiartas, Andreas
    Tsilifis, Panagiotis
    Narayanan, Shrikanth S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (12) : 3077 - 3092
  • [45] Unsupervised non parametric data clustering by means of Bayesian inference and information theory
    Bougeniere, Gilles
    Cariou, Claude
    Chehdi, Kacem
    Gay, Alan
    SIGMAP 2007: PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA APPLICATIONS, 2007, : 101 - +
  • [46] Non-parametric bayesian inference for integrals with respect to an unknown finite measure
    Erhardsson, Torkel
    SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (02) : 369 - 384
  • [47] On the robustness of the constancy of the Supernova absolute magnitude: Non-parametric reconstruction & Bayesian approaches
    Benisty, David
    Mifsud, Jurgen
    Said, Jackson Levi
    Staicova, Denitsa
    PHYSICS OF THE DARK UNIVERSE, 2023, 39
  • [48] INFERENCE ROBUSTNESS VS CRITERION ROBUSTNESS - EXAMPLE
    POLLOCK, KH
    AMERICAN STATISTICIAN, 1978, 32 (04): : 133 - 136
  • [49] BAYESIAN INFERENCE
    MARSHALL, JC
    JOURNAL OF EXPERIMENTAL EDUCATION, 1968, 37 (02): : 71 - 75
  • [50] Research on High Robustness Underwater Target Estimation Method Based on Variational Sparse Bayesian Inference
    Du, Libin
    Li, Huming
    Wang, Lei
    Lin, Xu
    Lv, Zhichao
    REMOTE SENSING, 2023, 15 (13)