Isoseparation and robustness in parametric Bayesian inference

被引:1
|
作者
Smith, Jim Q. [1 ]
Rigat, Fabio [1 ,2 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[2] Novartis Vaccines & Diagnost, Siena, Italy
关键词
Density ratio class; Hierarchical Bayesian inference; Local robustness; Total variation; Power steady model; Diabetes mellitus;
D O I
10.1007/s10463-011-0334-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a new family of local density separations for assessing robustness of finite-dimensional Bayesian posterior inferences with respect to their priors. Unlike for their global equivalents, under these novel separations posterior robustness is recovered even when the functioning posterior converges to a defective distribution, irrespectively of whether the prior densities are grossly misspecified and of the form and the validity of the assumed data sampling distribution. For exponential family models, the local density separations are shown to form the basis of a weak topology closely linked to the Euclidean metric on the natural parameters. In general, the local separations are shown to measure relative roughness of the prior distribution with respect to its corresponding posterior and provide explicit bounds for the total variation distance between an approximating posterior density to a genuine posterior. We illustrate the application of these bounds for assessing robustness of the posterior inferences for a dynamic time series model of blood glucose concentration in diabetes mellitus patients with respect to alternative prior specifications.
引用
收藏
页码:495 / 519
页数:25
相关论文
共 50 条
  • [31] Bayesian non-parametric inference for manifold based MoCap representation
    Natola, Fabrizio
    Ntouskos, Valsamis
    Sanzari, Marta
    Pirri, Fiora
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4606 - 4614
  • [32] Implementation of Bayesian non-parametric inference based on beta processes
    Damien, P
    Laud, PW
    Smith, AFM
    SCANDINAVIAN JOURNAL OF STATISTICS, 1996, 23 (01) : 27 - 36
  • [33] Non-parametric bayesian inference for inhomogeneous markov point processes
    Berthelsen, Kasper K.
    Moller, Jesper
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2008, 50 (03) : 257 - 272
  • [34] Bayesian Inference of a Parametric Random Spheroid from its Orthogonal Projections
    Mathieu de Langlard
    Fabrice Lamadie
    Sophie Charton
    Johan Debayle
    Methodology and Computing in Applied Probability, 2021, 23 : 549 - 567
  • [35] A Bayesian inference approach for parametric identification through optimal control method
    Bhattacharyya, Mainak
    Feissel, Pierre
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (14) : 3145 - 3165
  • [36] A Bayesian Inference Based Computational Tool for Parametric and Nonparametric Medical Diagnosis
    Chatzimichail, Theodora
    Hatjimihail, Aristides T.
    DIAGNOSTICS, 2023, 13 (19)
  • [37] Bayesian Inference of a Parametric Random Spheroid from its Orthogonal Projections
    de Langlard, Mathieu
    Lamadie, Fabrice
    Charton, Sophie
    Debayle, Johan
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2021, 23 (02) : 549 - 567
  • [38] NOTE ON CRITERION ROBUSTNESS + INFERENCE ROBUSTNESS
    BOX, GEP
    TIAO, GC
    BIOMETRIKA, 1964, 51 (1-2) : 169 - &
  • [39] Noise robustness of communications provided by coupling-function-encryption and dynamical Bayesian inference
    Stankovski, Tomislav
    McClintock, Peter V. E.
    Stefanovska, Aneta
    2017 INTERNATIONAL CONFERENCE ON NOISE AND FLUCTUATIONS (ICNF), 2017,
  • [40] hiHMM: Bayesian non-parametric joint inference of chromatin state maps
    Sohn, Kyung-Ah
    Ho, Joshua W. K.
    Djordjevic, Djordje
    Jeong, Hyun-hwan
    Park, Peter J.
    Kim, Ju Han
    BIOINFORMATICS, 2015, 31 (13) : 2066 - 2074