Serret-Frenet Frame and Curvatures of Bezier Curves

被引:12
|
作者
Erkan, Esra [1 ]
Yuce, Salim [1 ]
机构
[1] Yildiz Tech Univ, Fac Arts & Sci, Dept Math, TR-34220 Istanbul, Turkey
来源
MATHEMATICS | 2018年 / 6卷 / 12期
关键词
Bezier curve; Serret-Frenet frame; de Casteljau algorithm;
D O I
10.3390/math6120321
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this study is to view the role of Bezier curves in both the Euclidean plane E-2 and Euclidean space E-3 with the help of the fundamental algorithm which is commonly used in Computer Science and Applied Mathematics and without this algorithm. The Serret-Frenet elements of non-unit speed curves in the Euclidean plane E-2 and Euclidean space E-3 are given by Gray et al. in 2016. We used these formulas to find Serret-Frenet elements of planar Bezier curve at the end points and for every parameter t. Moreover, we reconstruct these elements for a planar Bezier curve, which is defined by the help of the algorithm based on intermediate points. Finally, in the literature, the spatial Bezier curve only mentioned at the end points, so we improve these elements for all parameters t. Additionally, we calculate these elements for all parameters t using algorithm above mentioned for spatial Bezier curve.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Null Frenet-Serret dynamics
    R. Capovilla
    J. Guven
    E. Rojas
    General Relativity and Gravitation, 2006, 38 : 689 - 698
  • [42] A novel feedrate planning and interpolating method for parametric toolpath in Frenet-Serret frame
    Ye, Peiqing
    Zhang, Yong
    Xiao, Jianxin
    Zhao, Mingyong
    Zhang, Hui
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 101 (5-8): : 1915 - 1925
  • [43] Hamiltonian Frenet-Serret dynamics
    Capovilla, R
    Guven, J
    Rojas, E
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (08) : 2277 - 2290
  • [44] Geometry of curves with fractional-order tangent vector and Frenet-Serret formulas
    Takahiro Yajima
    Shunya Oiwa
    Kazuhito Yamasaki
    Fractional Calculus and Applied Analysis, 2018, 21 : 1493 - 1505
  • [45] GEOMETRY OF CURVES WITH FRACTIONAL-ORDER TANGENT VECTOR AND FRENET-SERRET FORMULAS
    Yajima, Takahiro
    Oiwa, Shunya
    Yamasaki, Kazuhito
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (06) : 1493 - 1505
  • [46] Tracking the Frenet-Serret frame associated to a highly maneuvering target in 3D
    Pilte, Marion
    Bonnabel, Silvere
    Barbaresco, Frederic
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [47] Structured time-delay models for dynamical systems with connections to Frenet-Serret frame
    Hirsh, Seth M.
    Ichinaga, Sara M.
    Brunton, Steven L.
    Nathan Kutz, J.
    Brunton, Bingni W.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2254):
  • [48] GENERALIZED SMARANDACHE CURVES WITH FRENET-TYPE FRAME
    Isbilir, Zehra
    Tosun, Murat
    HONAM MATHEMATICAL JOURNAL, 2024, 46 (02): : 181 - 197
  • [49] FRENET-SERRET DESCRIPTION OF GYROSCOPIC PRECESSION
    IYER, BR
    VISHVESHWARA, CV
    PHYSICAL REVIEW D, 1993, 48 (12): : 5706 - 5720
  • [50] Robust path-following control of a container ship based on Serret–Frenet frame transformation
    Yang Zhao
    Lili Dong
    Journal of Marine Science and Technology, 2020, 25 : 69 - 80