Serret-Frenet Frame and Curvatures of Bezier Curves

被引:12
|
作者
Erkan, Esra [1 ]
Yuce, Salim [1 ]
机构
[1] Yildiz Tech Univ, Fac Arts & Sci, Dept Math, TR-34220 Istanbul, Turkey
来源
MATHEMATICS | 2018年 / 6卷 / 12期
关键词
Bezier curve; Serret-Frenet frame; de Casteljau algorithm;
D O I
10.3390/math6120321
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this study is to view the role of Bezier curves in both the Euclidean plane E-2 and Euclidean space E-3 with the help of the fundamental algorithm which is commonly used in Computer Science and Applied Mathematics and without this algorithm. The Serret-Frenet elements of non-unit speed curves in the Euclidean plane E-2 and Euclidean space E-3 are given by Gray et al. in 2016. We used these formulas to find Serret-Frenet elements of planar Bezier curve at the end points and for every parameter t. Moreover, we reconstruct these elements for a planar Bezier curve, which is defined by the help of the algorithm based on intermediate points. Finally, in the literature, the spatial Bezier curve only mentioned at the end points, so we improve these elements for all parameters t. Additionally, we calculate these elements for all parameters t using algorithm above mentioned for spatial Bezier curve.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Shape Analysis of Euclidean Curves under Frenet-Serret Framework
    Chassat, Perrine
    Park, Juhyun
    Brunel, Nicolas
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 4004 - 4013
  • [32] The non-orthogonal Serret-Frenet parametrization applied to the path following problem of a manipulator with partially known dynamics
    Mazur, Alicja
    Dyba, Filip
    ARCHIVES OF CONTROL SCIENCES, 2023, 33 (02) : 339 - 370
  • [33] The Frenet-Serret manipulator
    Mochiyama, H
    Hiramatsu, S
    Mori, Y
    2001 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS PROCEEDINGS, VOLS I AND II, 2001, : 20 - 25
  • [34] Serret-Frenet框架下欠驱动船的输出反馈路径跟踪鲁棒控制
    王志文
    彭秀艳
    王大巍
    船舶工程, 2010, 32 (06) : 24 - 28+32
  • [35] Frenet-Serret dynamics
    Arreaga, G
    Capovilla, R
    Guven, J
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (23) : 5065 - 5083
  • [36] A SPINORIZATION OF THE FRENET-SERRET EQUATION
    TAKAHASHI, Y
    PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (05): : 1466 - 1467
  • [37] Visualizing the Frenet-Serret equations
    Aruliah, DA
    MAPLETECH, 1997, 4 (01): : 105 - 110
  • [38] A novel feedrate planning and interpolating method for parametric toolpath in Frenet-Serret frame
    Peiqing Ye
    Yong Zhang
    Jianxin Xiao
    Mingyong Zhao
    Hui Zhang
    The International Journal of Advanced Manufacturing Technology, 2019, 101 : 1915 - 1925
  • [39] Smarandache Curves of Bertrand Curves Pair According to Frenet Frame
    Senyurt, Suleyman
    Caliskan, Abdussamet
    Celik, Unzile
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (05): : 163 - 173
  • [40] Null Frenet-Serret dynamics
    Capovilla, R.
    Guven, J.
    Rojas, E.
    GENERAL RELATIVITY AND GRAVITATION, 2006, 38 (04) : 689 - 698