Hamiltonian Frenet-Serret dynamics

被引:6
|
作者
Capovilla, R
Guven, J
Rojas, E
机构
[1] IPN, Ctr Invest & Estudios Avanzados, Dept Fis, Mexico City 07000, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
[3] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
关键词
D O I
10.1088/0264-9381/19/8/315
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Hamiltonian formulation of the dynamics of a relativistic particle described by a higher derivative action that depends both on the first and the second Frenet-Serret curvatures is considered from a geometrical perspective. We demonstrate how reparametrization covariant dynamical variables and their projections onto the Frenet-Serret frame can be exploited to provide not only a significant simplification of but also novel insights into the canonical analysis. The constraint algebra and the Hamiltonian equations of motion are written down and a geometrical interpretation is provided for the canonical variables.
引用
收藏
页码:2277 / 2290
页数:14
相关论文
共 50 条
  • [1] Frenet-Serret dynamics
    Arreaga, G
    Capovilla, R
    Guven, J
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (23) : 5065 - 5083
  • [2] Null Frenet-Serret dynamics
    Capovilla, R.
    Guven, J.
    Rojas, E.
    GENERAL RELATIVITY AND GRAVITATION, 2006, 38 (04) : 689 - 698
  • [3] Null Frenet-Serret dynamics
    R. Capovilla
    J. Guven
    E. Rojas
    General Relativity and Gravitation, 2006, 38 : 689 - 698
  • [4] Bi-Hamiltonian structure in Frenet-Serret frame
    Abadoglu, E.
    Gumral, H.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (05) : 526 - 530
  • [5] The Frenet-Serret manipulator
    Mochiyama, H
    Hiramatsu, S
    Mori, Y
    2001 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS PROCEEDINGS, VOLS I AND II, 2001, : 20 - 25
  • [6] A SPINORIZATION OF THE FRENET-SERRET EQUATION
    TAKAHASHI, Y
    PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (05): : 1466 - 1467
  • [7] Visualizing the Frenet-Serret equations
    Aruliah, DA
    MAPLETECH, 1997, 4 (01): : 105 - 110
  • [8] Curves with rational Frenet-Serret motion
    Wagner, MG
    Ravani, B
    COMPUTER AIDED GEOMETRIC DESIGN, 1997, 15 (01) : 79 - 101
  • [9] FRENET-SERRET DESCRIPTION OF GYROSCOPIC PRECESSION
    IYER, BR
    VISHVESHWARA, CV
    PHYSICAL REVIEW D, 1993, 48 (12): : 5706 - 5720
  • [10] Comparison of spin dynamics in the cylindrical and Frenet-Serret coordinate systems
    Silenko A.J.
    Physics of Particles and Nuclei Letters, 2015, 12 (1) : 8 - 10