Hamiltonian Frenet-Serret dynamics

被引:6
|
作者
Capovilla, R
Guven, J
Rojas, E
机构
[1] IPN, Ctr Invest & Estudios Avanzados, Dept Fis, Mexico City 07000, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
[3] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
关键词
D O I
10.1088/0264-9381/19/8/315
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Hamiltonian formulation of the dynamics of a relativistic particle described by a higher derivative action that depends both on the first and the second Frenet-Serret curvatures is considered from a geometrical perspective. We demonstrate how reparametrization covariant dynamical variables and their projections onto the Frenet-Serret frame can be exploited to provide not only a significant simplification of but also novel insights into the canonical analysis. The constraint algebra and the Hamiltonian equations of motion are written down and a geometrical interpretation is provided for the canonical variables.
引用
收藏
页码:2277 / 2290
页数:14
相关论文
共 50 条
  • [21] Direct kinematics of manipulators with hyperdegrees of freedom and Frenet-Serret formula
    Mochiyama, H
    Shimemura, E
    Kobayashi, H
    1998 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-4, 1998, : 1653 - 1658
  • [22] The Frenet-Serret representation of the Landau-Lifshitz-Gilbert equation
    Vieira, Vitor R.
    Horley, Paul P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (06)
  • [23] Shape Analysis of Euclidean Curves under Frenet-Serret Framework
    Chassat, Perrine
    Park, Juhyun
    Brunel, Nicolas
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 4004 - 4013
  • [24] The Frenet-Serret description of Born rigidity and its application to the Dirac equation
    Formiga, J. B.
    REVISTA MEXICANA DE FISICA, 2020, 66 (02) : 180 - 185
  • [25] 空间曲线的Frenet-Serret公式及其类似公式
    傅朝金
    李光芹
    湖北师范学院学报(自然科学版), 2001, (04) : 88 - 91
  • [26] Robot Arm Motion Design by Frenet-Serret and Rotation Minimizing Frames
    Ravani, Reza
    2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 5, 2009, : 151 - 155
  • [27] A novel feedrate planning and interpolating method for parametric toolpath in Frenet-Serret frame
    Peiqing Ye
    Yong Zhang
    Jianxin Xiao
    Mingyong Zhao
    Hui Zhang
    The International Journal of Advanced Manufacturing Technology, 2019, 101 : 1915 - 1925
  • [28] Unruh effect as particular Frenet-Serret vacuum radiation and detection proposals
    Rosu, HC
    QUANTUM ASPECTS OF BEAM PHYSICS, 2004, : 164 - 175
  • [29] A Trajectory Simulator Using Frenet-Serret Formulas Applied to Punctual Objects
    Mendes Martins, Gabriel Dadalto
    Naruto, Isutomu de Lima
    Danner, Patricia
    Frencl, Victor Baptista
    2018 13TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRY APPLICATIONS (INDUSCON), 2018, : 750 - 755
  • [30] A SUPERSYMMETRIC FRENET-SERRET EQUATION AND SUPERSYMMETRIC NON-LINEAR EQUATIONS
    CHOWDHURY, AR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (10): : L525 - L527