Efficiency of profile likelihood in semi-parametric models

被引:3
|
作者
Hirose, Yuichi [1 ]
机构
[1] Victoria Univ Wellington, Sch Math Stat & Operat Res, Wellington, New Zealand
关键词
Semi-parametric model; Profile likelihood; Two-phase outcome-dependent sampling; Efficiency; M-estimator; Maximum likelihood estimator; Efficient score; Efficient information bound; LARGE-SAMPLE THEORY; MAXIMUM-LIKELIHOOD; LOGISTIC-REGRESSION; 2-PHASE; CONSISTENCY; INFORMATION; ESTIMATORS;
D O I
10.1007/s10463-010-0280-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Profile likelihood is a popular method of estimation in the presence of an infinite-dimensional nuisance parameter, as the method reduces the infinite-dimensional estimation problem to a finite-dimensional one. In this paper we investigate the efficiency of a semi-parametric maximum likelihood estimator based on the profile likelihood. By introducing a new parametrization, we improve on the seminal work of Murphy and van der Vaart (J Am Stat Assoc, 95: 449-485, 2000): our improvement establishes the efficiency of the estimator through the direct quadratic expansion of the profile likelihood, which requires fewer assumptions. To illustrate the method an application to two-phase outcome-dependent sampling design is given.
引用
收藏
页码:1247 / 1275
页数:29
相关论文
共 50 条
  • [41] Identification of semi-parametric hybrid process models
    Yang, Aidong
    Martin, Elaine
    Morris, Julian
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (01) : 63 - 70
  • [42] Specification testing in semi-parametric transformation models
    Kloodt, Nick
    Neumeyer, Natalie
    Van Keilegom, Ingrid
    [J]. TEST, 2021, 30 (04) : 980 - 1003
  • [43] KSPM: A Package For Kernel Semi-Parametric Models
    Schramm, Catherine
    Jacquemont, Sebastien
    Oualkacha, Karim
    Labbe, Aurelie
    Greenwood, Celia M. T.
    [J]. R JOURNAL, 2020, 12 (02): : 82 - 106
  • [44] A METHOD FOR COMPARING SEMI-PARAMETRIC MODELS WITH PARAMETRIC MODELS IN COMPETING RISKS ANALYSIS
    WAN, J
    [J]. COMPUTERS AND BIOMEDICAL RESEARCH, 1989, 22 (06): : 565 - 574
  • [45] Semi-parametric efficiency, distribution-freeness and invariance
    Hallin, M
    Werker, BJM
    [J]. BERNOULLI, 2003, 9 (01) : 137 - 165
  • [46] PROFILE LIKELIHOOD AND CONDITIONALLY PARAMETRIC MODELS
    SEVERINI, TA
    WONG, WH
    [J]. ANNALS OF STATISTICS, 1992, 20 (04): : 1768 - 1802
  • [47] SEMI-PARAMETRIC LIKELIHOOD INFERENCE FOR BIRNBAUM-SAUNDERS FRAILTY MODEL
    Balakrishnan, N.
    Liu, Kai
    [J]. REVSTAT-STATISTICAL JOURNAL, 2018, 16 (02) : 231 - 255
  • [48] Combining parametric, semi-parametric, and non-parametric survival models with stacked survival models
    Wey, Andrew
    Connett, John
    Rudser, Kyle
    [J]. BIOSTATISTICS, 2015, 16 (03) : 537 - 549
  • [49] Alternative semi-parametric likelihood approaches to generalised method of moments estimation
    Smith, RJ
    [J]. ECONOMIC JOURNAL, 1997, 107 (441): : 503 - 519
  • [50] Ensemble of Semi-Parametric Models for IoT Fog Modeling
    Jan, Ibny
    Iranmanesh, Saeid
    Sajeev, A. S. M.
    [J]. 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2995 - 2998