Bipartiteness and the least eigenvalue of signless Laplacian of graphs

被引:47
|
作者
Fallat, Shaun [1 ]
Fan, Yi-Zheng [1 ,2 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[2] Anhui Univ, Sch Math Sci, Hefei 230039, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Graph; Signless Laplacian; Least eigenvalue; Bipartiteness; UNICYCLIC MIXED GRAPH; SPECTRAL-RADIUS; EIGENVECTORS; CONNECTIVITY; MATRIX; NUMBER;
D O I
10.1016/j.laa.2011.11.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph, and let lambda(b)(G) the least eigenvalue of the signless Laplacian of the graph G. In this paper we focus on the relations between the least eigenvalue and some parameters reflecting the graph bipartiteness. We introduce two parameters: the vertex bipartiteness nu(b) (G) and the edge bipartiteness epsilon(b)(G), and show that lambda(G) <= nu(b)(G) <= epsilon(b)(G). We also define another parameter (psi) over bar (G) involved with a cut set, and prove that lambda(G) >= Delta(G) - root Delta(G)(2) - (psi) over bar (G)(2), where Delta(G) is the maximum degree of the graph G. The above two inequalities are very similar in form to those given by Fiedler and Mohar, respectively, with respect to the algebraic connectivity of Laplacian of graphs, which is used to characterize the connectedness of graphs. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3254 / 3267
页数:14
相关论文
共 50 条
  • [21] A Sharp Lower Bound on the Least Signless Laplacian Eigenvalue of a Graph
    Xiaodan Chen
    Yaoping Hou
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 2011 - 2018
  • [22] The upper bound for the largest signless Laplacian eigenvalue of weighted graphs
    Gazi University, Departments Mathematic, Teknikokullar
    Ankara
    06500, Turkey
    不详
    Ankara
    06500, Turkey
    GU J. Sci., 4 (709-714):
  • [23] NESTED GRAPHS WITH BOUNDED SECOND LARGEST (SIGNLESS LAPLACIAN) EIGENVALUE
    Andelic, Milica
    Koledin, Tamara
    Stanic, Zoran
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 24 : 181 - 201
  • [24] Graphs with at most one signless Laplacian eigenvalue exceeding three
    Lin, Hongying
    Zhou, Bo
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (02): : 377 - 383
  • [25] On the least signless Laplacian eigenvalue of non-bipartite unicyclic graphs with both given order and diameter
    Guo, Shu-Guang
    Xu, Meiling
    Yu, Guanglong
    ARS COMBINATORIA, 2014, 114 : 385 - 395
  • [26] On conjectures involving second largest signless Laplacian eigenvalue of graphs
    Das, Kinkar Ch.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 3018 - 3029
  • [27] The Upper Bound for the Largest Signless Laplacian Eigenvalue of Weighted Graphs
    Buyukkose, Serife
    Mutlu, Nursah
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2015, 28 (04): : 709 - 714
  • [28] ON THE SIGNLESS LAPLACIAN AND NORMALIZED SIGNLESS LAPLACIAN SPREADS OF GRAPHS
    Milovanovic, Emina
    Altindag, Serife Burcu Bozkurt
    Matejic, Marjan
    Milovanovic, Igor
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (02) : 499 - 511
  • [29] On the signless Laplacian and normalized signless Laplacian spreads of graphs
    Emina Milovanović
    Şerife Burcu Bozkurt Altindağ
    Marjan Matejić
    Igor Milovanović
    Czechoslovak Mathematical Journal, 2023, 73 : 499 - 511
  • [30] EIGENVALUE BOUNDS FOR THE SIGNLESS LAPLACIAN
    Cvetkovic, Dragos
    Rowlinson, Peter
    Simic, Slobodan
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2007, 81 (95): : 11 - 27