Bipartiteness and the least eigenvalue of signless Laplacian of graphs

被引:47
|
作者
Fallat, Shaun [1 ]
Fan, Yi-Zheng [1 ,2 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[2] Anhui Univ, Sch Math Sci, Hefei 230039, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Graph; Signless Laplacian; Least eigenvalue; Bipartiteness; UNICYCLIC MIXED GRAPH; SPECTRAL-RADIUS; EIGENVECTORS; CONNECTIVITY; MATRIX; NUMBER;
D O I
10.1016/j.laa.2011.11.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph, and let lambda(b)(G) the least eigenvalue of the signless Laplacian of the graph G. In this paper we focus on the relations between the least eigenvalue and some parameters reflecting the graph bipartiteness. We introduce two parameters: the vertex bipartiteness nu(b) (G) and the edge bipartiteness epsilon(b)(G), and show that lambda(G) <= nu(b)(G) <= epsilon(b)(G). We also define another parameter (psi) over bar (G) involved with a cut set, and prove that lambda(G) >= Delta(G) - root Delta(G)(2) - (psi) over bar (G)(2), where Delta(G) is the maximum degree of the graph G. The above two inequalities are very similar in form to those given by Fiedler and Mohar, respectively, with respect to the algebraic connectivity of Laplacian of graphs, which is used to characterize the connectedness of graphs. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3254 / 3267
页数:14
相关论文
共 50 条
  • [31] Signed Graphs with extremal least Laplacian eigenvalue
    Belardo, Francesco
    Zhou, Yue
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 497 : 167 - 180
  • [32] Balancedness and the least eigenvalue of Laplacian of signed graphs
    Belardo, Francesco
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 446 : 133 - 147
  • [33] The smallest eigenvalue of the signless Laplacian
    de Lima, Leonardo Silva
    Oliveira, Carla Silva
    Maia de Abreu, Nair Maria
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2570 - 2584
  • [34] On two conjectures of Randic index and the largest signless Laplacian eigenvalue of graphs
    Deng, Hanyuan
    Balachandran, S.
    Ayyaswamy, S. K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (01) : 196 - 200
  • [35] On a conjecture involving the second largest signless Laplacian eigenvalue and the index of graphs
    Azjargal, Enkhbayar
    Adiyanyam, Damchaa
    Horoldagva, Batmend
    DISCRETE MATHEMATICS LETTERS, 2020, 4 : 23 - 26
  • [36] Unicyclic Graphs with a Perfect Matching Having Signless Laplacian Eigenvalue Two
    Jianxi LI
    Wai Chee SHIU
    Journal of Mathematical Research with Applications, 2017, 37 (04) : 379 - 390
  • [37] A Note on the Signless Laplacian and Distance Signless Laplacian Eigenvalues of Graphs
    Fenglei TIAN
    Xiaoming LI
    Jianling ROU
    JournalofMathematicalResearchwithApplications, 2014, 34 (06) : 647 - 654
  • [38] A Sharp Upper Bound on the Least Signless Laplacian Eigenvalue Using Domination Number
    He, Chang-Xiang
    Zhou, Min
    GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1183 - 1192
  • [39] A Sharp Upper Bound on the Least Signless Laplacian Eigenvalue Using Domination Number
    Chang-Xiang He
    Min Zhou
    Graphs and Combinatorics, 2014, 30 : 1183 - 1192
  • [40] Minimizing the least Laplacian eigenvalue of signed complete graphs
    Li, Dan
    Yan, Minghui
    Meng, Jixiang
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 484