On Some New Inequalities of Hermite-Hadamard Midpoint and Trapezoid Type for Preinvex Functions in p,q-Calculus

被引:7
|
作者
Sial, Ifra Bashir [1 ]
Ali, Muhammad Aamir [2 ]
Murtaza, Ghulam [3 ]
Ntouyas, Sotiris K. [4 ,5 ]
Soontharanon, Jarunee [6 ]
Sitthiwirattham, Thanin [7 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[3] Univ Management & Technol, Dept Math, Lahore 54700, Pakistan
[4] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[5] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[6] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
[7] Suan Dusit Univ, Fac Sci & Technol, Math Dept, Bangkok 10300, Thailand
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 10期
关键词
Hermite-Hadamard inequality; (p; q)-integral; post quantum calculus; convex function; INTEGRAL-INEQUALITIES; CONVEX;
D O I
10.3390/sym13101864
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we establish some new Hermite-Hadamard type inequalities for preinvex functions and left-right estimates of newly established inequalities for p,q-differentiable preinvex functions in the context of p,q-calculus. We also show that the results established in this paper are generalizations of comparable results in the literature of integral inequalities. Analytic inequalities of this nature and especially the techniques involved have applications in various areas in which symmetry plays a prominent role.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] FRACTIONAL HERMITE-HADAMARD INEQUALITIES FOR SOME CLASSES OF DIFFERENTIABLE PREINVEX FUNCTIONS
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Mihai, Marcela V.
    Awan, Muhammad Uzair
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (03): : 163 - 174
  • [22] Integral inequalities of Hermite-Hadamard type for functions whose derivatives are α-preinvex
    Wang, Yan
    Zheng, Miao-Miao
    Qi, Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [23] HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR HARMONICALLY RELATIVE PREINVEX FUNCTIONS
    Afzal, Sadia
    Hussain, Sabir
    Latif, Muhammad Amer
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2020, 52 (03): : 75 - 97
  • [24] Hermite-Hadamard type inequalities for logarithmically B-preinvex functions
    Zafar, Fiza
    Hussain, Nawab
    Yasmin, Nusrat
    Mehboob, Hina
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 6096 - 6112
  • [25] (p, q)-Hermite-Hadamard inequalities and (p, q)-estimates for midpoint type inequalities via convex and quasi-convex functions
    Kunt, Mehmet
    Iscan, Imdat
    Alp, Necmettin
    Sarikaya, Mehmet Zeki
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 969 - 992
  • [26] Hermite-Hadamard type inequalities for operator s-preinvex functions
    Wang, Shu-Hong
    Liu, Xi-Min
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (06): : 1070 - 1081
  • [27] Hermite-Hadamard type inequalities for differentiable h(phi)-preinvex functions
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Awan, Muhammad Uzair
    Khan, Sundas
    ARABIAN JOURNAL OF MATHEMATICS, 2015, 4 (01) : 63 - 76
  • [28] Integral inequalities of Hermite-Hadamard type for functions whose derivatives are α-preinvex
    Yan Wang
    Miao-Miao Zheng
    Feng Qi
    Journal of Inequalities and Applications, 2014 (1)
  • [29] Hermite-Hadamard Type Inequalities For Conformable Integrals Via Preinvex Functions
    Khurshid, Yousaf
    Khan, Muhammad Adil
    APPLIED MATHEMATICS E-NOTES, 2021, 21 : 437 - 450
  • [30] Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions
    Kalsoom, Humaira
    Latif, Muhammad Amer
    Idrees, Muhammad
    Arif, Muhammad
    Salleh, Zabidin
    AIMS MATHEMATICS, 2021, 6 (12): : 13291 - 13310