On Some New Inequalities of Hermite-Hadamard Midpoint and Trapezoid Type for Preinvex Functions in p,q-Calculus

被引:7
|
作者
Sial, Ifra Bashir [1 ]
Ali, Muhammad Aamir [2 ]
Murtaza, Ghulam [3 ]
Ntouyas, Sotiris K. [4 ,5 ]
Soontharanon, Jarunee [6 ]
Sitthiwirattham, Thanin [7 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[3] Univ Management & Technol, Dept Math, Lahore 54700, Pakistan
[4] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[5] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[6] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
[7] Suan Dusit Univ, Fac Sci & Technol, Math Dept, Bangkok 10300, Thailand
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 10期
关键词
Hermite-Hadamard inequality; (p; q)-integral; post quantum calculus; convex function; INTEGRAL-INEQUALITIES; CONVEX;
D O I
10.3390/sym13101864
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we establish some new Hermite-Hadamard type inequalities for preinvex functions and left-right estimates of newly established inequalities for p,q-differentiable preinvex functions in the context of p,q-calculus. We also show that the results established in this paper are generalizations of comparable results in the literature of integral inequalities. Analytic inequalities of this nature and especially the techniques involved have applications in various areas in which symmetry plays a prominent role.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Hermite-Hadamard type inequalities for n-times differentiable and preinvex functions
    Shu-Hong Wang
    Feng Qi
    Journal of Inequalities and Applications, 2014
  • [42] New Hermite-Hadamard inequalities for twice differentiable φ-MT-preinvex functions
    Zheng, Sheng
    Du, Ting-Song
    Zhao, Sha-Sha
    Chen, Lian-Zi
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (10): : 5648 - 5660
  • [43] SOME NEW HERMITE-HADAMARD INTEGRAL INEQUALITIES IN MULTIPLICATIVE CALCULUS
    Ali, M. A.
    Abbas, M.
    Budak, H.
    Kashuri, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (04): : 1183 - 1193
  • [44] Some New Hermite-Hadamard and Related Inequalities for Convex Functions via (p,q)-Integral
    Vivas-Cortez, Miguel
    Ali, Muhammad Aamir
    Budak, Huseyin
    Kalsoom, Humaira
    Agarwal, Praveen
    ENTROPY, 2021, 23 (07)
  • [45] NEW HERMITE-HADAMARD'S INEQUALITIES FOR PREINVEX FUNCTIONS VIA FRACTIONAL INTEGRALS
    Qaisar, Shahid
    Iqbal, Muhammad
    Muddassar, Muhammad
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 20 (07) : 1318 - 1328
  • [46] SOME NEW INEQUALITIES ON GENERALIZATION OF HERMITE-HADAMARD AND BULLEN TYPE INEQUALITIES, APPLICATIONS TO TRAPEZOIDAL AND MIDPOINT FORMULA
    Iscan, Imdat
    Toplu, Tekin
    Yetgin, Fatih
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (04): : 647 - 657
  • [47] Generalized Preinvex Interval-Valued Functions and Related Hermite-Hadamard Type Inequalities
    Khan, Muhammad Bilal
    Treanta, Savin
    Soliman, Mohamed S.
    SYMMETRY-BASEL, 2022, 14 (09):
  • [48] SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES AND THEIR APPLICATIONS
    Kashuri, Artion
    Liko, Rozana
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2019, 56 (01) : 103 - 142
  • [49] Some Hermite-Hadamard type integral inequalities for multidimensional general preinvex stochastic processes
    Okur, Nurgul
    Aliyev, Rovshan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (14) : 3338 - 3351
  • [50] ON SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR CERTAIN CONVEX FUNCTIONS
    Tunc, Mevlut
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2014, 15 (01): : 3 - 10