On Some New Inequalities of Hermite-Hadamard Midpoint and Trapezoid Type for Preinvex Functions in p,q-Calculus

被引:7
|
作者
Sial, Ifra Bashir [1 ]
Ali, Muhammad Aamir [2 ]
Murtaza, Ghulam [3 ]
Ntouyas, Sotiris K. [4 ,5 ]
Soontharanon, Jarunee [6 ]
Sitthiwirattham, Thanin [7 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[3] Univ Management & Technol, Dept Math, Lahore 54700, Pakistan
[4] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[5] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[6] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
[7] Suan Dusit Univ, Fac Sci & Technol, Math Dept, Bangkok 10300, Thailand
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 10期
关键词
Hermite-Hadamard inequality; (p; q)-integral; post quantum calculus; convex function; INTEGRAL-INEQUALITIES; CONVEX;
D O I
10.3390/sym13101864
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we establish some new Hermite-Hadamard type inequalities for preinvex functions and left-right estimates of newly established inequalities for p,q-differentiable preinvex functions in the context of p,q-calculus. We also show that the results established in this paper are generalizations of comparable results in the literature of integral inequalities. Analytic inequalities of this nature and especially the techniques involved have applications in various areas in which symmetry plays a prominent role.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Some New Midpoint and Trapezoidal-Type Inequalities for General Convex Functions in q-Calculus
    Zhao, Dafang
    Gulshan, Ghazala
    Ali, Muhammad Aamir
    Nonlaopon, Kamsing
    MATHEMATICS, 2022, 10 (03)
  • [32] Some trapezoid and midpoint type inequalities via fractional (p, q)-calculus
    Neang, Pheak
    Nonlaopon, Kamsing
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Agarwal, Praveen
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01):
  • [33] Some (p, q)-Integral Inequalities of Hermite-Hadamard Inequalities for (p, q)-Differentiable Convex Functions
    Luangboon, Waewta
    Nonlaopon, Kamsing
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Budak, Huseyin
    MATHEMATICS, 2022, 10 (05)
  • [34] Refinements of Hermite-Hadamard Inequalities for Continuous Convex Functions via (p,q)-Calculus
    Prabseang, Julalak
    Nonlaopon, Kamsing
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    MATHEMATICS, 2021, 9 (04) : 1 - 12
  • [35] Integral inequalities of Hermite-Hadamard type for logarithmically h-preinvex functions
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Awan, Muhammad Uzair
    Qi, Feng
    COGENT MATHEMATICS, 2015, 2
  • [36] Some new Hermite-Hadamard type inequalities in terms of operator h-preinvex functions in Hilbert Space
    Unluyol, Erdal
    Baskoy, Elif
    Altunc, Cansu
    1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018), 2018, 1991
  • [37] Hermite-Hadamard type inequalities for n-times differentiable and preinvex functions
    Wang, Shu-Hong
    Qi, Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [38] ON SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR CONVEX FUNCTIONS
    Sarikaya, Mehmet Zeki
    Avci, Merve
    Kavurmaci, Havva
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 852 - +
  • [39] Two Dimensional Operator Preinvex Functions and associated Hermite-Hadamard type Inequalities
    Mihai, Marcela V.
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Du, Ting-Song
    Khan, Awais Gul
    FILOMAT, 2018, 32 (08) : 2825 - 2836
  • [40] A Comprehensive Analysis of Hermite-Hadamard Type Inequalities via Generalized Preinvex Functions
    Tariq, Muhammad
    Ahmad, Hijaz
    Budak, Hueseyin
    Sahoo, Soubhagya Kumar
    Sitthiwirattham, Thanin
    Reunsumrit, Jiraporn
    AXIOMS, 2021, 10 (04)