Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions

被引:1
|
作者
Kalsoom, Humaira [1 ]
Latif, Muhammad Amer [2 ]
Idrees, Muhammad [3 ]
Arif, Muhammad [4 ]
Salleh, Zabidin [5 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Faisal Univ, Dept Basic Sci, Al Hufuf 31982, Al Hasa, Saudi Arabia
[3] Zhejiang Univ, Dept Phys, Zhejiang Prov Key Lab Quantum Technol & Device, Hangzhou 310027, Peoples R China
[4] Abdul Wali Khan Univ Mardan, Dept Math, Mardan 23200, Pakistan
[5] Univ Malaysia Terengganu, Dept Math, Fac Ocean Engn Technol & Informat, Terengganu 21030, Malaysia
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 12期
关键词
quantum calculus; quantum Hermite-Hadamard inequality; higher order generalized preinvex mapping; q(kappa; 1); 2)-derivatives; 2)-integrals; INTEGRAL-INEQUALITIES; CONVEX; CONVERGENCE;
D O I
10.3934/math.2021769
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In accordance with the quantum calculus, the quantum Hermite-Hadamard type inequalities shown in recent findings provide improvements to quantum Hermite-Hadamard type inequalities. We acquire a new q(kappa 1)-integral and q(kappa 2)-integral identities, then employing these identities, we establish new quantum Hermite-Hadamard q(kappa 1)-integral and q(kappa 2)-integral type inequalities through generalized higher-order strongly preinvex and quasi-preinvex functions. The claim of our study has been graphically supported, and some special cases are provided as well. Finally, we present a comprehensive application of the newly obtained key results. Our outcomes from these new generalizations can be applied to evaluate several mathematical problems relating to applications in the real world. These new results are significant for improving integrated symmetrical function approximations or functions of some symmetry degree.
引用
收藏
页码:13291 / 13310
页数:20
相关论文
共 50 条
  • [1] A Comprehensive Analysis of Hermite-Hadamard Type Inequalities via Generalized Preinvex Functions
    Tariq, Muhammad
    Ahmad, Hijaz
    Budak, Hueseyin
    Sahoo, Soubhagya Kumar
    Sitthiwirattham, Thanin
    Reunsumrit, Jiraporn
    [J]. AXIOMS, 2021, 10 (04)
  • [2] Hermite-Hadamard Type Fractional Integral Inequalities for Preinvex Functions
    LIAN TIE-YAN
    TANG WEI
    ZHOU RUI
    Ji You-qing
    [J]. Communications in Mathematical Research, 2018, 34 (04) : 351 - 362
  • [3] Generalized Preinvex Interval-Valued Functions and Related Hermite-Hadamard Type Inequalities
    Khan, Muhammad Bilal
    Treanta, Savin
    Soliman, Mohamed S.
    [J]. SYMMETRY-BASEL, 2022, 14 (09):
  • [4] Hermite-Hadamard Type Inequalities for Operator h-preinvex Functions
    LIAN TIE-YAN
    TANG WEI
    [J]. Communications in Mathematical Research, 2019, 35 (02) : 180 - 192
  • [5] On Hermite-Hadamard Inequalities for h-Preinvex Functions
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Awan, Muhammad Uzair
    Li, Jueyou
    [J]. FILOMAT, 2014, 28 (07) : 1463 - 1474
  • [6] HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR HARMONICALLY RELATIVE PREINVEX FUNCTIONS
    Afzal, Sadia
    Hussain, Sabir
    Latif, Muhammad Amer
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2020, 52 (03): : 75 - 97
  • [7] Integral inequalities of Hermite-Hadamard type for functions whose derivatives are α-preinvex
    Wang, Yan
    Zheng, Miao-Miao
    Qi, Feng
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [8] Hermite-Hadamard type inequalities for logarithmically B-preinvex functions
    Zafar, Fiza
    Hussain, Nawab
    Yasmin, Nusrat
    Mehboob, Hina
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 6096 - 6112
  • [9] Hermite-Hadamard type inequalities for operator s-preinvex functions
    Wang, Shu-Hong
    Liu, Xi-Min
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (06): : 1070 - 1081
  • [10] Integral inequalities of Hermite-Hadamard type for functions whose derivatives are α-preinvex
    Yan Wang
    Miao-Miao Zheng
    Feng Qi
    [J]. Journal of Inequalities and Applications, 2014 (1)