Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions

被引:1
|
作者
Kalsoom, Humaira [1 ]
Latif, Muhammad Amer [2 ]
Idrees, Muhammad [3 ]
Arif, Muhammad [4 ]
Salleh, Zabidin [5 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Faisal Univ, Dept Basic Sci, Al Hufuf 31982, Al Hasa, Saudi Arabia
[3] Zhejiang Univ, Dept Phys, Zhejiang Prov Key Lab Quantum Technol & Device, Hangzhou 310027, Peoples R China
[4] Abdul Wali Khan Univ Mardan, Dept Math, Mardan 23200, Pakistan
[5] Univ Malaysia Terengganu, Dept Math, Fac Ocean Engn Technol & Informat, Terengganu 21030, Malaysia
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 12期
关键词
quantum calculus; quantum Hermite-Hadamard inequality; higher order generalized preinvex mapping; q(kappa; 1); 2)-derivatives; 2)-integrals; INTEGRAL-INEQUALITIES; CONVEX; CONVERGENCE;
D O I
10.3934/math.2021769
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In accordance with the quantum calculus, the quantum Hermite-Hadamard type inequalities shown in recent findings provide improvements to quantum Hermite-Hadamard type inequalities. We acquire a new q(kappa 1)-integral and q(kappa 2)-integral identities, then employing these identities, we establish new quantum Hermite-Hadamard q(kappa 1)-integral and q(kappa 2)-integral type inequalities through generalized higher-order strongly preinvex and quasi-preinvex functions. The claim of our study has been graphically supported, and some special cases are provided as well. Finally, we present a comprehensive application of the newly obtained key results. Our outcomes from these new generalizations can be applied to evaluate several mathematical problems relating to applications in the real world. These new results are significant for improving integrated symmetrical function approximations or functions of some symmetry degree.
引用
收藏
页码:13291 / 13310
页数:20
相关论文
共 50 条
  • [21] HERMITE-HADAMARD TYPE INEQUALITIES FOR GENERALIZED (s, m, phi)-PREINVEX GODUNOVA-LEVIN FUNCTIONS
    Kashuri, Artion
    Liko, Rozana
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 683 - 700
  • [22] HERMITE-HADAMARD TYPE LOCAL FRACTIONAL INTEGRAL INEQUALITIES FOR GENERALIZED s-PREINVEX FUNCTIONS AND THEIR GENERALIZATION
    Sun, Wenbing
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (04)
  • [23] HERMITE-HADAMARD TYPE INEQUALITIES FOR GENERALIZED (s, m, phi)-PREINVEX GODUNOVA-LEVIN FUNCTIONS
    Kashuri, Artion
    Liko, Rozana
    [J]. RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2018, 22 (534): : 63 - 75
  • [24] Hermite-Hadamard inequality for preinvex functions
    Iqbal, Akhlad
    Saleh, Khairul
    Ahmad, Izhar
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (50): : 294 - 302
  • [25] ON NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR GENERALIZED CONVEX FUNCTIONS
    Qaisar, Shahid
    He, Chuanjiang
    Hussain, Sabir
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 139 - 148
  • [26] HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS
    Aslani, S. Mohammadi
    Delavar, M. Rostamian
    Vaezpour, S. M.
    [J]. JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (01): : 17 - 33
  • [27] Some Hermite-Hadamard type integral inequalities for operator AG-preinvex functions
    Taghavi, Ali
    Nazari, Haji Mohammad
    Darvish, Vahid
    [J]. ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2016, 8 (02) : 312 - 323
  • [28] QUANTUM HERMITE-HADAMARD TYPE INEQUALITIES AND RELATED INEQUALITIES FOR SUBADDITIVE FUNCTIONS
    Ali, Muhammad Aamir
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    Zhang, Zhiyue
    [J]. MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 5 - 13
  • [29] Hermite-Hadamard inequalities for generalized convex functions
    Bessenyei M.
    Páles Z.
    [J]. aequationes mathematicae, 2005, 69 (1-2) : 32 - 40
  • [30] HERMITE-HADAMARD TYPE LOCAL FRACTIONAL INTEGRAL INEQUALITIES WITH MITTAG-LEFFLER KERNEL FOR GENERALIZED PREINVEX FUNCTIONS
    Sun, Wenbing
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (08)