Estimation of allele frequency and association mapping using next-generation sequencing data

被引:110
|
作者
Kim, Su Yeon [1 ,2 ]
Lohmueller, Kirk E. [1 ,2 ]
Albrechtsen, Anders [3 ]
Li, Yingrui [4 ]
Korneliussen, Thorfinn [5 ]
Tian, Geng [4 ,6 ,7 ]
Grarup, Niels [8 ]
Jiang, Tao [4 ]
Andersen, Gitte [9 ]
Witte, Daniel [10 ]
Jorgensen, Torben [11 ]
Hansen, Torben [8 ,12 ]
Pedersen, Oluf [8 ,9 ,13 ,14 ]
Wang, Jun [4 ,5 ]
Nielsen, Rasmus [1 ,2 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[3] Univ Copenhagen, Bioinformat Ctr, Copenhagen, Denmark
[4] Beijing Genom Inst, Shenzhen 518083, Peoples R China
[5] Univ Copenhagen, Dept Biol, Copenhagen, Denmark
[6] Chinese Acad Sci, Beijing Inst Genom, Beijing 101300, Peoples R China
[7] Chinese Acad Sci, Grad Univ, Beijing 100062, Peoples R China
[8] Univ Copenhagen, Fac Hlth Sci, Novo Nordisk Fdn, Ctr Basic Metab Res, Copenhagen, Denmark
[9] Hagedorn Res Inst, Copenhagen, Denmark
[10] Steno Diabet Ctr, DK-2820 Gentofte, Denmark
[11] Glostrup Univ Hosp, Res Ctr Prevent & Hlth, Glostrup, Denmark
[12] Univ So Denmark, Fac Hlth Sci, Odense, Denmark
[13] Univ Aarhus, Fac Hlth Sci, Aarhus, Denmark
[14] Univ Copenhagen, Inst Biomed Sci, Copenhagen, Denmark
来源
BMC BIOINFORMATICS | 2011年 / 12卷
基金
美国国家卫生研究院;
关键词
MAXIMUM-LIKELIHOOD; SNP DISCOVERY; SPECTRUM; HITCHHIKING; POPULATIONS; SELECTION; TOOL;
D O I
10.1186/1471-2105-12-231
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Estimation of allele frequency is of fundamental importance in population genetic analyses and in association mapping. In most studies using next-generation sequencing, a cost effective approach is to use medium or low-coverage data (e. g., < 15X). However, SNP calling and allele frequency estimation in such studies is associated with substantial statistical uncertainty because of varying coverage and high error rates. Results: We evaluate a new maximum likelihood method for estimating allele frequencies in low and medium coverage next-generation sequencing data. The method is based on integrating over uncertainty in the data for each individual rather than first calling genotypes. This method can be applied to directly test for associations in case/control studies. We use simulations to compare the likelihood method to methods based on genotype calling, and show that the likelihood method outperforms the genotype calling methods in terms of: (1) accuracy of allele frequency estimation, (2) accuracy of the estimation of the distribution of allele frequencies across neutrally evolving sites, and (3) statistical power in association mapping studies. Using real re-sequencing data from 200 individuals obtained from an exon-capture experiment, we show that the patterns observed in the simulations are also found in real data. Conclusions: Overall, our results suggest that association mapping and estimation of allele frequencies should not be based on genotype calling in low to medium coverage data. Furthermore, if genotype calling methods are used, it is usually better not to filter genotypes based on the call confidence score.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Visualizing next-generation sequencing data with JBrowse
    Westesson, Oscar
    Skinner, Mitchell
    Holmes, Ian
    BRIEFINGS IN BIOINFORMATICS, 2013, 14 (02) : 172 - 177
  • [42] Focus on next-generation sequencing data analysis
    Rusk N.
    Nature Methods, 2009, 6 (Suppl 11) : S1 - S1
  • [43] Next-generation sequencing: adjusting to data overload
    Monya Baker
    Nature Methods, 2010, 7 : 495 - 499
  • [44] Next-generation sequencing: adjusting to data overload
    Baker, Monya
    NATURE METHODS, 2010, 7 (07) : 495 - 499
  • [45] Assembly algorithms for next-generation sequencing data
    Miller, Jason R.
    Koren, Sergey
    Sutton, Granger
    GENOMICS, 2010, 95 (06) : 315 - 327
  • [46] Applications and data analysis of next-generation sequencing
    Vogl, Ina
    Benet-Pages, Anna
    Eck, Sebastian H.
    Kuhn, Marius
    Vosberg, Sebastian
    Greif, Philipp A.
    Metzeler, Klaus H.
    Biskup, Saskia
    Mueller-Reible, Clemens
    Klein, Hanns-Georg
    LABORATORIUMSMEDIZIN-JOURNAL OF LABORATORY MEDICINE, 2013, 37 (06): : 305 - 315
  • [47] Identification of indels in next-generation sequencing data
    Aakrosh Ratan
    Thomas L Olson
    Thomas P Loughran
    Webb Miller
    BMC Bioinformatics, 16
  • [48] Next-generation sequencing and the evolution of data sharing
    de Macena Sobreira, Nara Lygia
    Hamosh, Ada
    AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2021, 185 (09) : 2633 - 2635
  • [49] Pathway analysis with next-generation sequencing data
    Zhao, Jinying
    Zhu, Yun
    Boerwinkle, Eric
    Xiong, Momiao
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2015, 23 (04) : 507 - 515
  • [50] Genotyping microsatellites in next-generation sequencing data
    Dashnow, Harriet
    Tan, Susan
    Das, Debjani
    Easteal, Simon
    Oshlack, Alicia
    BMC BIOINFORMATICS, 2015, 16