Estimation of allele frequency and association mapping using next-generation sequencing data

被引:110
|
作者
Kim, Su Yeon [1 ,2 ]
Lohmueller, Kirk E. [1 ,2 ]
Albrechtsen, Anders [3 ]
Li, Yingrui [4 ]
Korneliussen, Thorfinn [5 ]
Tian, Geng [4 ,6 ,7 ]
Grarup, Niels [8 ]
Jiang, Tao [4 ]
Andersen, Gitte [9 ]
Witte, Daniel [10 ]
Jorgensen, Torben [11 ]
Hansen, Torben [8 ,12 ]
Pedersen, Oluf [8 ,9 ,13 ,14 ]
Wang, Jun [4 ,5 ]
Nielsen, Rasmus [1 ,2 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[3] Univ Copenhagen, Bioinformat Ctr, Copenhagen, Denmark
[4] Beijing Genom Inst, Shenzhen 518083, Peoples R China
[5] Univ Copenhagen, Dept Biol, Copenhagen, Denmark
[6] Chinese Acad Sci, Beijing Inst Genom, Beijing 101300, Peoples R China
[7] Chinese Acad Sci, Grad Univ, Beijing 100062, Peoples R China
[8] Univ Copenhagen, Fac Hlth Sci, Novo Nordisk Fdn, Ctr Basic Metab Res, Copenhagen, Denmark
[9] Hagedorn Res Inst, Copenhagen, Denmark
[10] Steno Diabet Ctr, DK-2820 Gentofte, Denmark
[11] Glostrup Univ Hosp, Res Ctr Prevent & Hlth, Glostrup, Denmark
[12] Univ So Denmark, Fac Hlth Sci, Odense, Denmark
[13] Univ Aarhus, Fac Hlth Sci, Aarhus, Denmark
[14] Univ Copenhagen, Inst Biomed Sci, Copenhagen, Denmark
来源
BMC BIOINFORMATICS | 2011年 / 12卷
基金
美国国家卫生研究院;
关键词
MAXIMUM-LIKELIHOOD; SNP DISCOVERY; SPECTRUM; HITCHHIKING; POPULATIONS; SELECTION; TOOL;
D O I
10.1186/1471-2105-12-231
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Estimation of allele frequency is of fundamental importance in population genetic analyses and in association mapping. In most studies using next-generation sequencing, a cost effective approach is to use medium or low-coverage data (e. g., < 15X). However, SNP calling and allele frequency estimation in such studies is associated with substantial statistical uncertainty because of varying coverage and high error rates. Results: We evaluate a new maximum likelihood method for estimating allele frequencies in low and medium coverage next-generation sequencing data. The method is based on integrating over uncertainty in the data for each individual rather than first calling genotypes. This method can be applied to directly test for associations in case/control studies. We use simulations to compare the likelihood method to methods based on genotype calling, and show that the likelihood method outperforms the genotype calling methods in terms of: (1) accuracy of allele frequency estimation, (2) accuracy of the estimation of the distribution of allele frequencies across neutrally evolving sites, and (3) statistical power in association mapping studies. Using real re-sequencing data from 200 individuals obtained from an exon-capture experiment, we show that the patterns observed in the simulations are also found in real data. Conclusions: Overall, our results suggest that association mapping and estimation of allele frequencies should not be based on genotype calling in low to medium coverage data. Furthermore, if genotype calling methods are used, it is usually better not to filter genotypes based on the call confidence score.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Using population data for assessing next-generation sequencing performance
    Houniet, Darren T.
    Rahman, Thahira J.
    Al Turki, Saeed
    Hurles, Matthew E.
    Xu, Yaobo
    Goodship, Judith
    Keavney, Bernard
    Santibanez Koref, Mauro
    BIOINFORMATICS, 2015, 31 (01) : 56 - 61
  • [32] Mapping of Nematode Resistance in Hexaploid Sweetpotato Using an Next-Generation Sequencing-Based Association Study
    Obata, Nozomi
    Tabuchi, Hiroaki
    Kurihara, Miyu
    Yamamoto, Eiji
    Shirasawa, Kenta
    Monden, Yuki
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [33] BM-Map: Bayesian Mapping of Multireads for Next-Generation Sequencing Data
    Ji, Yuan
    Xu, Yanxun
    Zhang, Qiong
    Tsui, Kam-Wah
    Yuan, Yuan
    Norris, Clift, Jr.
    Liang, Shoudan
    Liang, Han
    BIOMETRICS, 2011, 67 (04) : 1215 - 1224
  • [34] A Bayesian Analysis and Optimal Design for Association Studies Using Next-Generation Pooled Sequencing Data
    Liang, Wei E.
    Thomas, Duncan C.
    Conti, David V.
    GENETIC EPIDEMIOLOGY, 2012, 36 (02) : 124 - 125
  • [35] Next-generation sequencing of the next generation
    Darren J. Burgess
    Nature Reviews Genetics, 2011, 12 : 78 - 79
  • [36] THE ECOLOGICAL ESTIMATION OF LAKE VERKHNY KABAN USING THE NEXT-GENERATION SEQUENCING
    Husainov, Artur M.
    Frolova, Ludmila L.
    INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2018, 5 (10): : 10357 - 10363
  • [37] Evaluation of next-generation sequencing software in mapping and assembly
    Suying Bao
    Rui Jiang
    WingKeung Kwan
    BinBin Wang
    Xu Ma
    You-Qiang Song
    Journal of Human Genetics, 2011, 56 : 406 - 414
  • [38] Characterization of the novel HLA-A*33:246 allele using next-generation sequencing
    Pedini, Pascal
    Brami, Beila
    Walencik, Alexandre
    Frassati, Coralie
    Picard, Christophe
    HLA, 2023, 102 (05) : 617 - 619
  • [39] Pathway analysis with next-generation sequencing data
    Jinying Zhao
    Yun Zhu
    Eric Boerwinkle
    Momiao Xiong
    European Journal of Human Genetics, 2015, 23 : 507 - 515
  • [40] Identification of indels in next-generation sequencing data
    Ratan, Aakrosh
    Olson, Thomas L.
    Loughran, Thomas P., Jr.
    Miller, Webb
    BMC BIOINFORMATICS, 2015, 16