Entanglement entropy in quantum gravity and the Plateau problem

被引:23
|
作者
Fursaev, Dmitri V. [1 ,2 ]
机构
[1] Dubna Int Univ, Dubna 141980, Moscow Region, Russia
[2] Joint Inst Nucl Res, Univ Ctr, Dubna 141980, Moscow Region, Russia
来源
PHYSICAL REVIEW D | 2008年 / 77卷 / 12期
关键词
D O I
10.1103/PhysRevD.77.124002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In a quantum gravity theory the entropy of entanglement S between the fundamental degrees of freedom spatially divided by a surface is discussed. Classical gravity is considered as an emergent phenomenon and arguments are presented that (1) S is a macroscopical quantity which can be determined without knowing a real microscopical content of the fundamental theory; (2) S is given by the Bekenstein-Hawking formula in terms of the area of a codimension 2 hypesurface B; (3) in static space-times B can be defined as a minimal hypersurface of a least volume separating the system in a constant-time slice. It is shown that properties of S are in agreement with basic properties of the von Neumann entropy. Explicit variational formulae for S in different physical examples are considered.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Discussion of Entanglement Entropy in Quantum Gravity
    Ma, Chen-Te
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2018, 66 (02):
  • [2] Entanglement entropy in loop quantum gravity
    Donnelly, William
    [J]. PHYSICAL REVIEW D, 2008, 77 (10):
  • [3] Entanglement entropy and correlations in loop quantum gravity
    Feller, Alexandre
    Livine, Etera R.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (04)
  • [4] Finite entanglement entropy in asymptotically safe quantum gravity
    Carlo Pagani
    Martin Reuter
    [J]. Journal of High Energy Physics, 2018
  • [5] Finite entanglement entropy and spectral dimension in quantum gravity
    Arzano, Michele
    Calcagni, Gianluca
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (12):
  • [6] Geometry and entanglement entropy of surfaces in loop quantum gravity
    Grueber, David
    Sahlmann, Hanno
    Zilker, Thomas
    [J]. PHYSICAL REVIEW D, 2018, 98 (06):
  • [7] Finite entanglement entropy and spectral dimension in quantum gravity
    Michele Arzano
    Gianluca Calcagni
    [J]. The European Physical Journal C, 2017, 77
  • [8] Finite entanglement entropy in asymptotically safe quantum gravity
    Pagani, Carlo
    Reuter, Martin
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [9] Entanglement entropy in critical phenomena and analog models of quantum gravity
    Fursaev, Dmitri V.
    [J]. PHYSICAL REVIEW D, 2006, 73 (12):
  • [10] Loop quantum gravity, exact holographic mapping, and holographic entanglement entropy
    Han, Muxin
    Hung, Ling-Yan
    [J]. PHYSICAL REVIEW D, 2017, 95 (02)