Entanglement entropy in critical phenomena and analog models of quantum gravity

被引:51
|
作者
Fursaev, Dmitri V. [1 ]
机构
[1] Dubna Int Univ, Dubna 141980, Moscow Region, Russia
[2] Univ Dubna Ctr, Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia
来源
PHYSICAL REVIEW D | 2006年 / 73卷 / 12期
关键词
D O I
10.1103/PhysRevD.73.124025
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A general geometrical structure of the entanglement entropy for spatial partition of a relativistic QFT system is established by using methods of the effective gravity action and the spectral geometry. A special attention is payed to the subleading terms in the entropy in different dimensions and to behavior in different states. It is conjectured, on the base of relation between the entropy and the action, that in a fundamental theory the ground state entanglement entropy per unit area equals 1/(4G(N)), where G(N) is the Newton constant in the low-energy gravity sector of the theory. The conjecture opens a new avenue in analogue gravity models. For instance, in higher-dimensional condensed matter systems, which near a critical point are described by relativistic QFT's, the entanglement entropy density defines an effective gravitational coupling. By studying the properties of this constant one can get new insights in quantum gravity phenomena, such as the universality of the low-energy physics, the renormalization group behavior of G(N), the statistical meaning of the Bekenstein-Hawking entropy.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Entanglement in quantum critical phenomena
    Vidal, G
    Latorre, JI
    Rico, E
    Kitaev, A
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (22) : 227902 - 227902
  • [2] Discussion of Entanglement Entropy in Quantum Gravity
    Ma, Chen-Te
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2018, 66 (02):
  • [3] Entanglement entropy in loop quantum gravity
    Donnelly, William
    [J]. PHYSICAL REVIEW D, 2008, 77 (10):
  • [4] Entanglement entropy and correlations in loop quantum gravity
    Feller, Alexandre
    Livine, Etera R.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (04)
  • [5] Entanglement entropy in quantum gravity and the Plateau problem
    Fursaev, Dmitri V.
    [J]. PHYSICAL REVIEW D, 2008, 77 (12):
  • [6] Boundary quantum critical phenomena with entanglement renormalization
    Evenbly, G.
    Pfeifer, R. N. C.
    Pico, V.
    Iblisdir, S.
    Tagliacozzo, L.
    McCulloch, I. P.
    Vidal, G.
    [J]. PHYSICAL REVIEW B, 2010, 82 (16):
  • [7] Finite entanglement entropy in asymptotically safe quantum gravity
    Carlo Pagani
    Martin Reuter
    [J]. Journal of High Energy Physics, 2018
  • [8] Finite entanglement entropy and spectral dimension in quantum gravity
    Arzano, Michele
    Calcagni, Gianluca
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (12):
  • [9] Geometry and entanglement entropy of surfaces in loop quantum gravity
    Grueber, David
    Sahlmann, Hanno
    Zilker, Thomas
    [J]. PHYSICAL REVIEW D, 2018, 98 (06):
  • [10] Finite entanglement entropy and spectral dimension in quantum gravity
    Michele Arzano
    Gianluca Calcagni
    [J]. The European Physical Journal C, 2017, 77