Geometry and entanglement entropy of surfaces in loop quantum gravity

被引:5
|
作者
Grueber, David [1 ]
Sahlmann, Hanno [1 ]
Zilker, Thomas [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Inst Quantum Grav, Staudtstr 7-B2, D-91058 Erlangen, Germany
来源
PHYSICAL REVIEW D | 2018年 / 98卷 / 06期
关键词
BLACK-HOLE ENTROPY; TRIAD OPERATOR QUANTIZATION; SPIN DYNAMICS QSD; CONSISTENCY CHECK; LENGTH OPERATOR; VOLUME; AREA;
D O I
10.1103/PhysRevD.98.066009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In loop quantum gravity, the area element of embedded spatial surfaces is given by a well-defined operator. We further characterize the quantized geometry of such surfaces by proposing definitions for operators quantizing scalar curvature and mean curvature. By investigating their properties, we shed light on the nature of the geometry of surfaces in loop quantum gravity. We also investigate the entanglement entropy across surfaces in the case where spin network edges are running within the surface. We observe that, on a certain class of states, the entropy gradient across a surface is proportional to the mean curvature. In particular, the entanglement entropy is constant for small deformations of a minimal surface in this case.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Entanglement entropy in loop quantum gravity
    Donnelly, William
    [J]. PHYSICAL REVIEW D, 2008, 77 (10):
  • [2] Entanglement entropy and correlations in loop quantum gravity
    Feller, Alexandre
    Livine, Etera R.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (04)
  • [3] Loop quantum gravity, exact holographic mapping, and holographic entanglement entropy
    Han, Muxin
    Hung, Ling-Yan
    [J]. PHYSICAL REVIEW D, 2017, 95 (02)
  • [4] θ parameter in loop quantum gravity: Effects on quantum geometry and black hole entropy
    Rezende, Danilo Jimenez
    Perez, Alejandro
    [J]. PHYSICAL REVIEW D, 2008, 78 (08):
  • [5] Discussion of Entanglement Entropy in Quantum Gravity
    Ma, Chen-Te
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2018, 66 (02):
  • [6] A note on entanglement entropy and quantum geometry
    Bodendorfer, N.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (21)
  • [7] Entanglement entropy in quantum gravity and the Plateau problem
    Fursaev, Dmitri V.
    [J]. PHYSICAL REVIEW D, 2008, 77 (12):
  • [8] Entropy and area in loop quantum gravity
    Swain, J
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2005, 14 (12): : 2301 - 2305
  • [9] Bulk entropy in loop quantum gravity
    Livine, Etera R.
    Terno, Daniel R.
    [J]. NUCLEAR PHYSICS B, 2008, 794 (1-2) : 138 - 153
  • [10] Fermions, loop quantum gravity and geometry
    Chakravarty, Nabajit
    Mullick, Lipika
    Bandyopadhyay, Pratul
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2017, 26 (11):