Finite entanglement entropy and spectral dimension in quantum gravity

被引:0
|
作者
Michele Arzano
Gianluca Calcagni
机构
[1] “Sapienza” University of Rome,Dipartimento di Fisica and INFN
[2] Instituto de Estructura de la Materia,undefined
[3] CSIC,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations.
引用
收藏
相关论文
共 50 条
  • [1] Finite entanglement entropy and spectral dimension in quantum gravity
    Arzano, Michele
    Calcagni, Gianluca
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (12):
  • [2] Finite entanglement entropy in asymptotically safe quantum gravity
    Carlo Pagani
    Martin Reuter
    [J]. Journal of High Energy Physics, 2018
  • [3] Finite entanglement entropy in asymptotically safe quantum gravity
    Pagani, Carlo
    Reuter, Martin
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [4] Discussion of Entanglement Entropy in Quantum Gravity
    Ma, Chen-Te
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2018, 66 (02):
  • [5] Entanglement entropy in loop quantum gravity
    Donnelly, William
    [J]. PHYSICAL REVIEW D, 2008, 77 (10):
  • [6] Entanglement entropy and correlations in loop quantum gravity
    Feller, Alexandre
    Livine, Etera R.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (04)
  • [7] Entanglement entropy in quantum gravity and the Plateau problem
    Fursaev, Dmitri V.
    [J]. PHYSICAL REVIEW D, 2008, 77 (12):
  • [8] Spectral Dimension of Liouville Quantum Gravity
    Rémi Rhodes
    Vincent Vargas
    [J]. Annales Henri Poincaré, 2014, 15 : 2281 - 2298
  • [9] Spectral Dimension of Liouville Quantum Gravity
    Rhodes, Remi
    Vargas, Vincent
    [J]. ANNALES HENRI POINCARE, 2014, 15 (12): : 2281 - 2298
  • [10] The entanglement entropy for quantum system in one spatial dimension
    Wang, Honglei
    Su, Yao Heng
    Liang, Bo
    Chen, Longcong
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (01):