Fast hard multiple generators for radix-8 Booth encoded modulo 2n-1 and modulo 2n+1 multipliers

被引:0
|
作者
Muralidharan, Ramya [1 ]
Chang, Chip-Hong [1 ]
机构
[1] Nanyang Technol Univ, Ctr High Performance Embedded Syst, Singapore, Singapore
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hard multiple generation is the bottleneck operation in radix-8 Booth encoded modulo 2(n)-1 and modulo 2(n)+1 multipliers. In this paper, fast hard multiple generators for the moduli 2(n)-1 and 2(n)+1 are proposed. They are implemented as parallel-prefix structures based on the simplified carry equations. Synthesis results based on TSMC 0.18 mu m, 1.8V CMOS standard-cell library show that the proposed modulo 2(n)-1 hard multiple generator reduces the critical path delay of the fastest general-purpose modulo 2(n)-1 adder by 12% and 10% for n = 8 and n = 64, respectively. Compared to the smallest modulo 2(n)-1 adder, the proposed design leads to 19% and 12% savings in silicon area for n = 8 and n = 64, respectively. The proposed modulo 2(n)+1 hard multiple generator also has the least critical path delay among the existing modulo 2(n)+1 adders.
引用
收藏
页码:717 / 720
页数:4
相关论文
共 50 条
  • [21] Efficient modulo 2N+1 tree multipliers for diminished-1 operands
    Efstathiou, C
    Vergos, HT
    Dimitrakopoulos, G
    Nikolos, D
    ICECS 2003: PROCEEDINGS OF THE 2003 10TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS 1-3, 2003, : 200 - 203
  • [22] NEW MULTIPLIERS MODULO 2(N)-1
    SKAVANTZOS, A
    RAO, PB
    IEEE TRANSACTIONS ON COMPUTERS, 1992, 41 (08) : 957 - 961
  • [23] NOVEL MODULO 2n+1 SUBTRACTORS
    Vassalos, E.
    Bakalis, D.
    Vergos, H. T.
    2009 16TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 597 - +
  • [24] A radix-8 modulo 2n multiplier using area and power-optimized hard multiple generator
    Kabra, Naveen Kr.
    Patel, Zuber M.
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2021, 15 (01): : 36 - 55
  • [25] On Modulo 2n+1 Adder Design
    Vergos, Haridimos T.
    Dimitrakopoulos, Giorgos
    IEEE TRANSACTIONS ON COMPUTERS, 2012, 61 (02) : 173 - 186
  • [26] Algorithm for modulo (2n+1) multiplication
    Sousa, LA
    ELECTRONICS LETTERS, 2003, 39 (09) : 752 - 754
  • [27] Fast parallel-prefix modulo 2n+1 adders
    Efstathiou, C
    Vergos, HT
    Nikolos, D
    IEEE TRANSACTIONS ON COMPUTERS, 2004, 53 (09) : 1211 - 1216
  • [28] EFFICIENT ARCHITECTURES FOR MODULO 2n-1 SQUARERS
    Spyrou, A.
    Bakalis, D.
    Vergos, H. T.
    2009 16TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 687 - +
  • [29] Perspective and Opportunities of Modulo 2n-1 Multipliers in Residue Number System: A Review
    Kumar, Raj
    Jaiswal, Ritesh Kumar
    Mishra, Ram Awadh
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2020, 29 (11)
  • [30] Linear Approximations of Addition Modulo 2n-1
    Zhou, Chunfang
    Feng, Xiutao
    Wu, Chuankun
    FAST SOFTWARE ENCRYPTION (FSE 2011), 2011, 6733 : 359 - 377