A new model for over-dispersed count data: Poisson quasi-Lindley regression model

被引:24
|
作者
Altun, Emrah [1 ]
机构
[1] Bartin Univ, Dept Math, TR-74100 Bartin, Turkey
关键词
Count data; Poisson regression; Negative-binomial regression; Maximum Likelihood; Method of moments; Over-dispersion; LINEAR-MODEL;
D O I
10.1007/s40096-019-0293-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new regression model for count response variable is proposed via re-parametrization of Poisson quasi-Lindley distribution. The maximum likelihood and method of moment estimations are considered to estimate the unknown parameters of re-parametrized Poisson quasi-Lindley distribution. The simulation study is conducted to evaluate the efficiency of estimation methods. The real data set is analyzed to demonstrate the usefulness of proposed model against the well-known regression models for count data modeling such as Poisson and negative-binomial regression models. Empirical results show that when the response variable is over-dispersed, the proposed model provides better results than other competitive models.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 50 条
  • [31] A Pliant Model to Count Data: Nabla Poisson-Lindley Distribution with a Practical Data Example
    Gharari, Fatemeh
    Bakouch, Hassan
    Karakaya, Kadir
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (03)
  • [32] A new two-parameter over-dispersed discrete distribution with mathematical properties, estimation, regression model and applications
    Ahmadini, Abdullah Ali H.
    Ahsan-ul-Haq, Muhammad
    Hussain, Muhammad Nasir Saddam
    HELIYON, 2024, 10 (17)
  • [33] RETRACTED: EM Algorithm for Estimating the Parameters of Quasi-Lindley Model with Application (Retracted Article)
    Kayid, M.
    Al-Maflehi, Nassr S.
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [34] Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros
    Moghimbeigi, Abbas
    Eshraghian, Mohammed Reza
    Mohammad, Kazem
    McArdle, Brian
    JOURNAL OF APPLIED STATISTICS, 2008, 35 (10) : 1193 - 1202
  • [35] Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros
    Yau, KKW
    Wang, K
    Lee, AH
    BIOMETRICAL JOURNAL, 2003, 45 (04) : 437 - 452
  • [36] A semiparametric negative binomial generalized linear model for modeling over-dispersed count data with a heavy tail: Characteristics and applications to crash data
    Shirazi, Mohammadali
    Lord, Dominique
    Dhavala, Soma Sekhar
    Geedipally, Srinivas Reddy
    ACCIDENT ANALYSIS AND PREVENTION, 2016, 91 : 10 - 18
  • [37] Sample size calculations for comparative clinical trials with over-dispersed Poisson process data
    Matsui, S
    STATISTICS IN MEDICINE, 2005, 24 (09) : 1339 - 1356
  • [38] A hyper-Poisson regression model for overdispersed and underdispersed count data
    Saez-Castillo, A. J.
    Conde-Sanchez, A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 61 : 148 - 157
  • [39] Intrinsic Functional Partially Linear Poisson Regression Model for Count Data
    Xu, Jiaqi
    Lu, Yu
    Su, Yuanshen
    Liu, Tao
    Qi, Yunfei
    Xie, Wu
    AXIOMS, 2024, 13 (11)
  • [40] A LATENT CLASS POISSON REGRESSION-MODEL FOR HETEROGENEOUS COUNT DATA
    WEDEL, M
    DESARBO, WS
    BULT, JR
    RAMASWAMY, V
    JOURNAL OF APPLIED ECONOMETRICS, 1993, 8 (04) : 397 - 411