A new model for over-dispersed count data: Poisson quasi-Lindley regression model

被引:24
|
作者
Altun, Emrah [1 ]
机构
[1] Bartin Univ, Dept Math, TR-74100 Bartin, Turkey
关键词
Count data; Poisson regression; Negative-binomial regression; Maximum Likelihood; Method of moments; Over-dispersion; LINEAR-MODEL;
D O I
10.1007/s40096-019-0293-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new regression model for count response variable is proposed via re-parametrization of Poisson quasi-Lindley distribution. The maximum likelihood and method of moment estimations are considered to estimate the unknown parameters of re-parametrized Poisson quasi-Lindley distribution. The simulation study is conducted to evaluate the efficiency of estimation methods. The real data set is analyzed to demonstrate the usefulness of proposed model against the well-known regression models for count data modeling such as Poisson and negative-binomial regression models. Empirical results show that when the response variable is over-dispersed, the proposed model provides better results than other competitive models.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 50 条
  • [11] Ordinal regression models for zero-inflated and/or over-dispersed count data
    Valle, Denis
    Ben Toh, Kok
    Laporta, Gabriel Zorello
    Zhao, Qing
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [12] Neural network embedding of the over-dispersed Poisson reserving model
    Gabrielli, Andrea
    Richman, Ronald
    Wuthrich, Mario V.
    SCANDINAVIAN ACTUARIAL JOURNAL, 2020, 2020 (01) : 1 - 29
  • [13] Estimation for zero-inflated over-dispersed count data model with missing response
    Mian, Rajibul
    Paul, Sudhir
    STATISTICS IN MEDICINE, 2016, 35 (30) : 5603 - 5624
  • [14] Ordinal regression models for zero-inflated and/or over-dispersed count data
    Denis Valle
    Kok Ben Toh
    Gabriel Zorello Laporta
    Qing Zhao
    Scientific Reports, 9
  • [15] A New Compound Distribution and Its Applications in Over-dispersed Count Data
    Ahmad P.B.
    Wani M.K.
    Annals of Data Science, 2024, 11 (05) : 1799 - 1820
  • [16] Generalized Poisson-Lindley linear model for count data
    Wongrin, Weerinrada
    Bodhisuwan, Winai
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (15) : 2659 - 2671
  • [17] A NEW REGRESSION MODEL FOR POISSON LINDLEY DISTRIBUTION WITH APPLICATION
    Ebraheim, Abdul Hadi N.
    Mohamed, Salah M.
    Muayw, Khadeejah Abdullah
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [18] Over-dispersed count data in crop and agronomy research
    Kosma, Michal
    Studnicki, Marcin
    Wojcik-Seliga, Justyna
    Michalska-Klimczak, Beata
    Wyszynski, Zdzislaw
    Wojcik-Gront, Elzbieta
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2019, 205 (04) : 414 - 421
  • [19] A Bayesian hierarchical model for over-dispersed count data: a case study for abundance of hake recruits
    Mendes, Jorge M.
    Turkman, K. F.
    Jardim, Ernesto
    ENVIRONMETRICS, 2007, 18 (01) : 27 - 53
  • [20] A multivariate Poisson regression model for count data
    Munoz-Pichardo, J. M.
    Pino-Mejias, R.
    Garcia-Heras, J.
    Ruiz-Munoz, F.
    Luz Gonzalez-Regalado, M.
    JOURNAL OF APPLIED STATISTICS, 2021, 48 (13-15) : 2525 - 2541