A new model for over-dispersed count data: Poisson quasi-Lindley regression model

被引:24
|
作者
Altun, Emrah [1 ]
机构
[1] Bartin Univ, Dept Math, TR-74100 Bartin, Turkey
关键词
Count data; Poisson regression; Negative-binomial regression; Maximum Likelihood; Method of moments; Over-dispersion; LINEAR-MODEL;
D O I
10.1007/s40096-019-0293-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new regression model for count response variable is proposed via re-parametrization of Poisson quasi-Lindley distribution. The maximum likelihood and method of moment estimations are considered to estimate the unknown parameters of re-parametrized Poisson quasi-Lindley distribution. The simulation study is conducted to evaluate the efficiency of estimation methods. The real data set is analyzed to demonstrate the usefulness of proposed model against the well-known regression models for count data modeling such as Poisson and negative-binomial regression models. Empirical results show that when the response variable is over-dispersed, the proposed model provides better results than other competitive models.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 50 条
  • [41] A bivariate Sarmanov regression model for count data with generalised Poisson marginals
    Hofer, Vera
    Leitner, Johannes
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (12) : 2599 - 2617
  • [42] A Poisson Regression Model For Analysis of Censored Count Data with Excess Zeroes
    Saffari, Seyed Ehsan
    Adnan, Robiah
    Greene, William
    Ahmad, Maizah Hura
    JURNAL TEKNOLOGI, 2013, 63 (02):
  • [43] POISSON-BIRNBAUM-SAUNDERS REGRESSION MODEL FOR CLUSTERED COUNT DATA
    Goncalves, Jussiane nader
    Barreto-Souza, Wagner
    Ombao, Hernando
    ANNALS OF APPLIED STATISTICS, 2024, 18 (04): : 3338 - 3363
  • [44] Conway-Maxwell-Poisson regression models for dispersed count data
    Sellers, Kimberly F.
    Premeaux, Bailey
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (06)
  • [45] Regression Models for Mixed Over-Dispersed Poisson and Continuous Clustered Data: Modeling BMI and Number of Cigarettes Smoked Per Day
    Atem, Folefac
    Ngwa, Julius S.
    Adeniji, Abidemi
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2012, 11 (01) : 218 - 232
  • [46] MODELS FOR ANALYZING OVER-DISPERSED HURDLE NEGATIVE BINOMIAL REGRESSION MODEL: AN APPLICATION TO MANUFACTURED CIGARETTE USE
    Rudra, Sujan
    Biswas, Soma Chowdhury
    JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2019, 12 (02): : 51 - 60
  • [47] Quasi-poisson vs. negative binomial regression: How should we model overdispersed count data?
    Hoef, Jay M. Ver
    Boveng, Peter L.
    ECOLOGY, 2007, 88 (11) : 2766 - 2772
  • [48] Statistical monitoring of over-dispersed multivariate count data using approximate likelihood ratio tests
    Das, Devashish
    Zhou, Shiyu
    Chen, Yong
    Horst, John
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2016, 54 (21) : 6579 - 6593
  • [49] Modeling under or over-dispersed binomial count data by using extended Altham distribution families
    Asma, Senay
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (01): : 255 - 274
  • [50] A spline-based semiparametric sieve likelihood method for over-dispersed panel count data
    Hua, Lei
    Zhang, Ying
    Tu, Wanzhu
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (02): : 217 - 245