Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros

被引:235
|
作者
Yau, KKW
Wang, K
Lee, AH
机构
[1] Curtin Univ Technol, Sch Publ Hlth, Dept Epidemiol & Biostat, Perth, WA 6845, Australia
[2] City Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R China
关键词
count data; generalised linear mixed models; negative binomial; Poisson regression; random effects; zero-inflation;
D O I
10.1002/bimj.200390024
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In many biometrical applications, the count data encountered often contain extra zeros relative to the Poisson distribution. Zero-inflated Poisson regression models are useful for analyzing such data, but parameter estimates may be seriously biased if the nonzero observations are over-dispersed and simultaneously correlated due to the sampling design or the data collection procedure. In this paper, a zero-inflated negative binomial mixed regression model is presented to analyze a set of pancreas disorder length of stay (LOS) data that comprised mainly same-day separations. Random effects are introduced to account for inter-hospital variations and the dependency of clustered LOS observations. Parameter estimation is achieved by maximizing an appropriate log-likelihood function using an EM algorithm. Alternative modeling strategies, namely the finite mixture of Poisson distributions and the non-parametric maximum likelihood approach, are also considered. The detemidnation of pertinent covariates would assist hospital administrators and clinicians to manage LOS and expenditures efficiently.
引用
收藏
页码:437 / 452
页数:16
相关论文
共 50 条
  • [1] Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros
    Moghimbeigi, Abbas
    Eshraghian, Mohammed Reza
    Mohammad, Kazem
    McArdle, Brian
    JOURNAL OF APPLIED STATISTICS, 2008, 35 (10) : 1193 - 1202
  • [2] Ordinal regression models for zero-inflated and/or over-dispersed count data
    Valle, Denis
    Ben Toh, Kok
    Laporta, Gabriel Zorello
    Zhao, Qing
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [3] Ordinal regression models for zero-inflated and/or over-dispersed count data
    Denis Valle
    Kok Ben Toh
    Gabriel Zorello Laporta
    Qing Zhao
    Scientific Reports, 9
  • [4] A bivariate zero-inflated negative binomial regression model for count data with excess zeros
    Wang, PM
    ECONOMICS LETTERS, 2003, 78 (03) : 373 - 378
  • [5] Estimation for zero-inflated over-dispersed count data model with missing response
    Mian, Rajibul
    Paul, Sudhir
    STATISTICS IN MEDICINE, 2016, 35 (30) : 5603 - 5624
  • [6] COMPARING POISSON REGRESSION VIA NEGATIVE BINOMIAL REGRESSION FOR MODELING ZERO-INFLATED DATA
    Neamah, Mandi Wahhab
    Albasril, Enas Abid Alhafidh Mohamed
    Raheem, Saif Hosam
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 (01): : 365 - 373
  • [7] Geographically Weighted Zero-Inflated Negative Binomial Regression: A general case for count data
    da Silva, Alan Ricardo
    de Sousa, Marcos Douglas Rodrigues
    SPATIAL STATISTICS, 2023, 58
  • [8] Multilevel zero-inflated Generalized Poisson regression modeling for dispersed correlated count data
    Almasi, Afshin
    Eshraghian, Mohammad Reza
    Moghimbeigi, Abbas
    Rahimi, Abbas
    Mohammad, Kazem
    Fallahigilan, Sadegh
    STATISTICAL METHODOLOGY, 2016, 30 : 1 - 14
  • [9] Modeling Tetanus Neonatorum case using the regression of negative binomial and zero-inflated negative binomial
    Amaliana, Luthfatul
    Sa'adah, Umu
    Wardhani, Ni Wayan Surya
    FIRST AHMAD DAHLAN INTERNATIONAL CONFERENCE ON MATHEMATICS AND MATHEMATICS EDUCATION, 2018, 943
  • [10] Three-level zero-inflated Conway–Maxwell–Poisson regression model for analyzing dispersed clustered count data with extra zeros
    Somayeh Ghorbani Gholiabad
    Abbas Moghimbeigi
    Javad Faradmal
    Sankhya B, 2021, 83 : 415 - 439