Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros

被引:235
|
作者
Yau, KKW
Wang, K
Lee, AH
机构
[1] Curtin Univ Technol, Sch Publ Hlth, Dept Epidemiol & Biostat, Perth, WA 6845, Australia
[2] City Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R China
关键词
count data; generalised linear mixed models; negative binomial; Poisson regression; random effects; zero-inflation;
D O I
10.1002/bimj.200390024
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In many biometrical applications, the count data encountered often contain extra zeros relative to the Poisson distribution. Zero-inflated Poisson regression models are useful for analyzing such data, but parameter estimates may be seriously biased if the nonzero observations are over-dispersed and simultaneously correlated due to the sampling design or the data collection procedure. In this paper, a zero-inflated negative binomial mixed regression model is presented to analyze a set of pancreas disorder length of stay (LOS) data that comprised mainly same-day separations. Random effects are introduced to account for inter-hospital variations and the dependency of clustered LOS observations. Parameter estimation is achieved by maximizing an appropriate log-likelihood function using an EM algorithm. Alternative modeling strategies, namely the finite mixture of Poisson distributions and the non-parametric maximum likelihood approach, are also considered. The detemidnation of pertinent covariates would assist hospital administrators and clinicians to manage LOS and expenditures efficiently.
引用
收藏
页码:437 / 452
页数:16
相关论文
共 50 条
  • [31] Zero-inflated Bell regression models for count data
    Lemonte, Artur J.
    Moreno-Arenas, German
    Castellares, Fredy
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (02) : 265 - 286
  • [32] A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives
    Ridout, M
    Hinde, J
    Demétrio, CGB
    BIOMETRICS, 2001, 57 (01) : 219 - 223
  • [33] Infants' gut microbiome data: A Bayesian Marginal Zero-inflated Negative Binomial regression model for multivariate analyses of count data
    Hajihosseini, Morteza
    Amini, Payam
    Saidi-Mehrabad, Alireza
    Dinu, Irina
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 1621 - 1629
  • [34] A Bayesian zero-inflated negative binomial regression model for the integrative analysis of microbiome data
    Jiang, Shuang
    Xiao, Guanghua
    Koh, Andrew Y.
    Kim, Jiwoong
    Li, Qiwei
    Zhan, Xiaowei
    BIOSTATISTICS, 2021, 22 (03) : 522 - 540
  • [35] R2 measures for zero-inflated regression models for count data with excess zeros
    Martin, Jacob
    Hall, Daniel B.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (18) : 3777 - 3790
  • [36] On estimation and influence diagnostics for zero-inflated negative binomial regression models
    Garay, Aldo M.
    Hashimoto, Elizabeth M.
    Ortega, Edwin M. M.
    Lachos, Victor H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (03) : 1304 - 1318
  • [37] On estimation and influence diagnostics for zero-inflated negative binomial regression models
    Departamento de Estatstica, Universidade Estatual de Campinas, Brazil
    不详
    不详
    Comput. Stat. Data Anal., 3 (1304-1318):
  • [38] Marginalized zero-inflated negative binomial regression with application to dental caries
    Preisser, John S.
    Das, Kalyan
    Long, D. Leann
    Divaris, Kimon
    STATISTICS IN MEDICINE, 2016, 35 (10) : 1722 - 1735
  • [39] A zero-inflated negative binomial regression model with hidden Markov chain
    Wang, Peiming
    Alba, Joseph D.
    ECONOMICS LETTERS, 2006, 92 (02) : 209 - 213
  • [40] A new Stein estimator for the zero-inflated negative binomial regression model
    Akram, Muhammad Nauman
    Abonazel, Mohamed R.
    Amin, Muhammad
    Kibria, B. M. Golam
    Afzal, Nimra
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (19):