Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros

被引:235
|
作者
Yau, KKW
Wang, K
Lee, AH
机构
[1] Curtin Univ Technol, Sch Publ Hlth, Dept Epidemiol & Biostat, Perth, WA 6845, Australia
[2] City Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R China
关键词
count data; generalised linear mixed models; negative binomial; Poisson regression; random effects; zero-inflation;
D O I
10.1002/bimj.200390024
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In many biometrical applications, the count data encountered often contain extra zeros relative to the Poisson distribution. Zero-inflated Poisson regression models are useful for analyzing such data, but parameter estimates may be seriously biased if the nonzero observations are over-dispersed and simultaneously correlated due to the sampling design or the data collection procedure. In this paper, a zero-inflated negative binomial mixed regression model is presented to analyze a set of pancreas disorder length of stay (LOS) data that comprised mainly same-day separations. Random effects are introduced to account for inter-hospital variations and the dependency of clustered LOS observations. Parameter estimation is achieved by maximizing an appropriate log-likelihood function using an EM algorithm. Alternative modeling strategies, namely the finite mixture of Poisson distributions and the non-parametric maximum likelihood approach, are also considered. The detemidnation of pertinent covariates would assist hospital administrators and clinicians to manage LOS and expenditures efficiently.
引用
收藏
页码:437 / 452
页数:16
相关论文
共 50 条
  • [21] Fast zero-inflated negative binomial mixed modeling approach for analyzing longitudinal metagenomics data
    Zhang, Xinyan
    Yi, Nengjun
    BIOINFORMATICS, 2020, 36 (08) : 2345 - 2351
  • [22] A framework of zero-inflated bayesian negative binomial regression models for spatiotemporal data
    He, Qing
    Huang, Hsin-Hsiung
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 229
  • [23] POISSON AND NEGATIVE BINOMIAL REGRESSION MODELS FOR ZERO-INFLATED DATA: AN EXPERIMENTAL STUDY
    Yildirim, Gizem
    Kaciranlar, Selahattin
    Yildirim, Hasan
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (02): : 601 - 615
  • [24] The analysis of zero-inflated count data: Beyond zero-inflated Poisson regression.
    Loeys, Tom
    Moerkerke, Beatrijs
    De Smet, Olivia
    Buysse, Ann
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2012, 65 (01): : 163 - 180
  • [25] Parameter Estimation on Zero-Inflated Negative Binomial Regression with Right Truncated Data
    Saffari, Seyed Ehsan
    Adnan, Robiah
    SAINS MALAYSIANA, 2012, 41 (11): : 1483 - 1487
  • [26] A Study of Over-Dispersed Household Victimizations in South Korea: Zero-Inflated Negative Binomial Analysis of Korean National Crime Victimization Survey
    Park, Seong Min
    ASIAN JOURNAL OF CRIMINOLOGY, 2015, 10 (01) : 63 - 78
  • [27] Bivariate zero-inflated negative binomial regression model with applications
    Faroughi, Pouya
    Ismail, Noriszura
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (03) : 457 - 477
  • [28] A Study of Over-Dispersed Household Victimizations in South Korea: Zero-Inflated Negative Binomial Analysis of Korean National Crime Victimization Survey
    Seong min Park
    Asian Journal of Criminology, 2015, 10 : 63 - 78
  • [29] Marginal zero-inflated regression models for count data
    Martin, Jacob
    Hall, Daniel B.
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (10) : 1807 - 1826
  • [30] Modeling citrus huanglongbing data using a zero-inflated negative binomial distribution
    de Almeida, Eudmar Paiva
    Janeiro, Vanderly
    Guedes, Terezinha Aparecida
    Mulati, Fabio
    Pedroza Carneiro, Jose Walter
    de Carvalho Nunes, William Mario
    ACTA SCIENTIARUM-AGRONOMY, 2016, 38 (03): : 299 - 306