ANALYSIS OF A MULTI-TERM VARIABLE-ORDER TIME-FRACTIONAL DIFFUSION EQUATION AND ITS GALERKIN FINITE ELEMENT APPROXIMATION

被引:1
|
作者
Liu, Huan [1 ]
Null, Xiangcheng Zheng [2 ]
Fu, Hongfei [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2022年 / 40卷 / 05期
基金
中国国家自然科学基金; 美国国家科学基金会; 中国博士后科学基金;
关键词
Variable-order; Multi-term time-fractional diffusion equation; Solution regularity; Galerkin finite element; Parareal method; ANOMALOUS DIFFUSION; DIFFERENTIAL-EQUATIONS; NUMERICAL-METHODS; REGULARITY; PARAREAL; DISPERSION; MODELS;
D O I
10.4208/jcm.2102-m2020-0211
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the well-posedness and solution regularity of a multi-term variable-order time-fractional diffusion equation, and then develop an optimal Galerkin finite element scheme without any regularity assumption on its true solution. We show that the solution regularity of the considered problem can be affected by the maximum value of variable-order at initial time t = 0. More precisely, we prove that the solution to the multi-term variable-order time-fractional diffusion equation belongs to C-2 ([0, T]) in time provided that the maximum value has an integer limit near the initial time and the data has sufficient smoothness, otherwise the solution exhibits the same singular behavior like its constant-order counterpart. Based on these regularity results, we prove optimal-order convergence rate of the Galerkin finite element scheme. Furthermore, we develop an efficient parallel-in-time algorithm to reduce the computational costs of the evaluation of multi-term variable-order fractional derivatives. Numerical experiments are put forward to verify the theoretical findings and to demonstrate the efficiency of the proposed scheme.
引用
收藏
页码:818 / 838
页数:21
相关论文
共 50 条
  • [41] OPTIMAL INITIAL VALUE CONTROL FOR THE MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATION
    Veklych, R. A.
    Semenov, V. V.
    Lyashko, S. I.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2016, (06): : 100 - 103
  • [42] Analysis of a Time-Fractional Substantial Diffusion Equation of Variable Order
    Zheng, Xiangcheng
    Wang, Hong
    Guo, Xu
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [43] A robust numerical scheme and analysis for a class of multi-term time-fractional advection-diffusion equation with variable coefficients
    Sabir, Sufia
    Ahmad, Ayaz
    Kanaujiya, Ankur
    Mohapatra, Jugal
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, : 1943 - 1976
  • [44] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    A. S. V. Ravi Kanth
    Neetu Garg
    The European Physical Journal Plus, 134
  • [45] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    Kanth, A. S. V. Ravi
    Garg, Neetu
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [46] Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation
    Qiao, Leijie
    Xu, Da
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (08) : 1478 - 1493
  • [47] Wellposedness and regularity of the variable-order time-fractional diffusion equations
    Wang, Hong
    Zheng, Xiangcheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1778 - 1802
  • [48] Variable-order time-fractional diffusion equation with Mittag-Leffler kernel: regularity analysis and uniqueness of determining variable order
    Guo, Xu
    Zheng, Xiangcheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [49] Variable-order time-fractional diffusion equation with Mittag-Leffler kernel: regularity analysis and uniqueness of determining variable order
    Xu Guo
    Xiangcheng Zheng
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [50] A Fractional-order Quasi-reversibility Method to a Backward Problem for the Multi-term Time-fractional Diffusion Equation
    Sun, Liangliang
    Wang, Yuxin
    Chang, Maoli
    TAIWANESE JOURNAL OF MATHEMATICS, 2023, 27 (06): : 1185 - 1210