ANALYSIS OF A MULTI-TERM VARIABLE-ORDER TIME-FRACTIONAL DIFFUSION EQUATION AND ITS GALERKIN FINITE ELEMENT APPROXIMATION

被引:1
|
作者
Liu, Huan [1 ]
Null, Xiangcheng Zheng [2 ]
Fu, Hongfei [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2022年 / 40卷 / 05期
基金
中国国家自然科学基金; 美国国家科学基金会; 中国博士后科学基金;
关键词
Variable-order; Multi-term time-fractional diffusion equation; Solution regularity; Galerkin finite element; Parareal method; ANOMALOUS DIFFUSION; DIFFERENTIAL-EQUATIONS; NUMERICAL-METHODS; REGULARITY; PARAREAL; DISPERSION; MODELS;
D O I
10.4208/jcm.2102-m2020-0211
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the well-posedness and solution regularity of a multi-term variable-order time-fractional diffusion equation, and then develop an optimal Galerkin finite element scheme without any regularity assumption on its true solution. We show that the solution regularity of the considered problem can be affected by the maximum value of variable-order at initial time t = 0. More precisely, we prove that the solution to the multi-term variable-order time-fractional diffusion equation belongs to C-2 ([0, T]) in time provided that the maximum value has an integer limit near the initial time and the data has sufficient smoothness, otherwise the solution exhibits the same singular behavior like its constant-order counterpart. Based on these regularity results, we prove optimal-order convergence rate of the Galerkin finite element scheme. Furthermore, we develop an efficient parallel-in-time algorithm to reduce the computational costs of the evaluation of multi-term variable-order fractional derivatives. Numerical experiments are put forward to verify the theoretical findings and to demonstrate the efficiency of the proposed scheme.
引用
收藏
页码:818 / 838
页数:21
相关论文
共 50 条
  • [31] Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations
    Zheng, Xiangcheng
    Cheng, Jin
    Wang, Hong
    INVERSE PROBLEMS, 2019, 35 (12)
  • [32] Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation
    Sun, L. L.
    Li, Y. S.
    Zhang, Y.
    INVERSE PROBLEMS, 2021, 37 (05)
  • [33] A fast linearized Galerkin finite element method for the nonlinear multi-term time fractional wave equation
    Ming, Wanyuan
    Li, Mengting
    Lu, Yu
    Li, Meng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 157 : 27 - 48
  • [34] Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations
    Meng Li
    Chengming Huang
    Wanyuan Ming
    Computational and Applied Mathematics, 2018, 37 : 2309 - 2334
  • [35] A stabilizer-free weak Galerkin finite element method to variable-order time fractional diffusion equation in multiple space dimensions
    Ma, Jie
    Gao, Fuzheng
    Du, Ning
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) : 2096 - 2114
  • [36] Exponential-sum-approximation technique for variable-order time-fractional diffusion equations
    Jia-Li Zhang
    Zhi-Wei Fang
    Hai-Wei Sun
    Journal of Applied Mathematics and Computing, 2022, 68 : 323 - 347
  • [37] Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations
    Li, Meng
    Huang, Chengming
    Ming, Wanyuan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 2309 - 2334
  • [38] Exponential-sum-approximation technique for variable-order time-fractional diffusion equations
    Zhang, Jia-Li
    Fang, Zhi-Wei
    Sun, Hai-Wei
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 323 - 347
  • [39] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Y. S. Li
    L. L. Sun
    Z. Q. Zhang
    T. Wei
    Numerical Algorithms, 2019, 82 : 1279 - 1301
  • [40] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Li, Y. S.
    Sun, L. L.
    Zhang, Z. Q.
    Wei, T.
    NUMERICAL ALGORITHMS, 2019, 82 (04) : 1279 - 1301