Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation

被引:23
|
作者
Qiao, Leijie [1 ]
Xu, Da [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Minist Educ China, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-term time-fractional diffusion equation; orthogonal spline collocation method; stability; convergence rates; numerical experiments; DIAGONAL LINEAR-SYSTEMS; FINITE-ELEMENT-METHOD; BOUNDARY-VALUE-PROBLEMS; MODIFIED ALTERNATE ROW; INTEGRODIFFERENTIAL EQUATIONS; COLUMN ELIMINATION; FORTRAN PACKAGES; APPROXIMATIONS; ALGORITHMS;
D O I
10.1080/00207160.2017.1324150
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel numerical technique is considered for the solution of a multi-term time-fractional diffusion equation. The orthogonal spline collocation method is used for in space, and a finite difference method in time. The stability and convergence are provided. The numerical experiments for one and two dimensional problems support our theoretical analysis.
引用
收藏
页码:1478 / 1493
页数:16
相关论文
共 50 条
  • [1] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    A. S. V. Ravi Kanth
    Neetu Garg
    [J]. The European Physical Journal Plus, 134
  • [2] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    Kanth, A. S. V. Ravi
    Garg, Neetu
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [3] A fractional spline collocation-Galerkin method for the time-fractional diffusion equation
    Pezza, L.
    Pitolli, F.
    [J]. COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2018, 9 (01): : 104 - 120
  • [4] Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation
    Sun, L. L.
    Li, Y. S.
    Zhang, Y.
    [J]. INVERSE PROBLEMS, 2021, 37 (05)
  • [5] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Y. S. Li
    L. L. Sun
    Z. Q. Zhang
    T. Wei
    [J]. Numerical Algorithms, 2019, 82 : 1279 - 1301
  • [6] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Li, Y. S.
    Sun, L. L.
    Zhang, Z. Q.
    Wei, T.
    [J]. NUMERICAL ALGORITHMS, 2019, 82 (04) : 1279 - 1301
  • [7] OPTIMAL INITIAL VALUE CONTROL FOR THE MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATION
    Veklych, R. A.
    Semenov, V. V.
    Lyashko, S. I.
    [J]. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2016, (06): : 100 - 103
  • [8] The Galerkin finite element method for a multi-term time-fractional diffusion equation
    Jin, Bangti
    Lazarov, Raytcho
    Liu, Yikan
    Zhou, Zhi
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 825 - 843
  • [9] On the spline collocation method for the single layer equation related to time-fractional diffusion
    Kemppainen, Jukka T.
    Ruotsalainen, Keijo Matti
    [J]. NUMERICAL ALGORITHMS, 2011, 57 (03) : 313 - 327
  • [10] On the spline collocation method for the single layer equation related to time-fractional diffusion
    Jukka T. Kemppainen
    Keijo Matti Ruotsalainen
    [J]. Numerical Algorithms, 2011, 57 : 313 - 327