An implicit numerical scheme for a class of multi-term time-fractional diffusion equation

被引:0
|
作者
A. S. V. Ravi Kanth
Neetu Garg
机构
[1] National Institute of Technology,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we study an implicit numerical scheme for a class of multi-term time-fractional diffusion equation, where the fractional derivatives are described in the Caputo sense. The numerical scheme is constructed based on Crank-Nicolson finite difference method in time and exponential B-spline method in space. It is proved that the proposed scheme is unconditionally stable and convergent with second-order in space and (2 - γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document}) order in time. To illustrate the efficiency and accuracy of the present method, few numerical examples are presented and are compared with the other existing methods. Numerical results are presented to support theoretical analysis.
引用
收藏
相关论文
共 50 条
  • [1] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    Kanth, A. S. V. Ravi
    Garg, Neetu
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [2] Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation
    Qiao, Leijie
    Xu, Da
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (08) : 1478 - 1493
  • [3] Numerical methods for solving the multi-term time-fractional wave-diffusion equation
    Liu, Fawang
    Meerschaert, Mark M.
    McGough, Robert J.
    Zhuang, Pinghui
    Liu, Qingxia
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) : 9 - 25
  • [4] Numerical methods for solving the multi-term time-fractional wave-diffusion equation
    Fawang Liu
    Mark M. Meerschaert
    Robert J. McGough
    Pinghui Zhuang
    Qingxia Liu
    [J]. Fractional Calculus and Applied Analysis, 2013, 16 : 9 - 25
  • [5] An alternating direction implicit compact finite difference scheme for the multi-term time-fractional mixed diffusion and diffusion-wave equation
    Cui, Mingrong
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 213 : 194 - 210
  • [6] Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation
    Sun, L. L.
    Li, Y. S.
    Zhang, Y.
    [J]. INVERSE PROBLEMS, 2021, 37 (05)
  • [7] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Y. S. Li
    L. L. Sun
    Z. Q. Zhang
    T. Wei
    [J]. Numerical Algorithms, 2019, 82 : 1279 - 1301
  • [8] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Li, Y. S.
    Sun, L. L.
    Zhang, Z. Q.
    Wei, T.
    [J]. NUMERICAL ALGORITHMS, 2019, 82 (04) : 1279 - 1301
  • [9] OPTIMAL INITIAL VALUE CONTROL FOR THE MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATION
    Veklych, R. A.
    Semenov, V. V.
    Lyashko, S. I.
    [J]. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2016, (06): : 100 - 103
  • [10] Numerical Inversion for the Initial Distribution in the Multi-Term Time-Fractional Diffusion Equation Using Final Observations
    Sun, Chunlong
    Li, Gongsheng
    Jia, Xianzheng
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (06) : 1525 - 1546