Numerical Inversion for the Initial Distribution in the Multi-Term Time-Fractional Diffusion Equation Using Final Observations

被引:6
|
作者
Sun, Chunlong [1 ,2 ]
Li, Gongsheng [1 ]
Jia, Xianzheng [1 ]
机构
[1] Shandong Univ Technol, Sch Sci, Zibo 255049, Shandong, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-term time-fractional diffusion; multivariate Mittag-Leffler function; backward problem; ill-posedness; numerical inversion; BOUNDARY-VALUE-PROBLEMS; TRANSPORT;
D O I
10.4208/aamm.OA-2016-0170
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with numerical inversion for the initial distribution in the multi-term time-fractional diffusion equation using final observations. The inversion problem is of instability, but it is uniquely solvable based on the solution's expression for the forward problem and estimation to the multivariate Mittag-Leffler function. From view point of optimality, solving the inversion problem is transformed to minimizing a cost functional, and existence of a minimum is proved by the weakly lower semi-continuity of the functional. Furthermore, the homotopy regularization algorithm is introduced based on the minimization problem to perform numerical inversions, and the inversion solutions with noisy data give good approximations to the exact initial distribution demonstrating the efficiency of the inversion algorithm.
引用
收藏
页码:1525 / 1546
页数:22
相关论文
共 50 条
  • [1] Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation
    Sun, L. L.
    Li, Y. S.
    Zhang, Y.
    [J]. INVERSE PROBLEMS, 2021, 37 (05)
  • [2] OPTIMAL INITIAL VALUE CONTROL FOR THE MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATION
    Veklych, R. A.
    Semenov, V. V.
    Lyashko, S. I.
    [J]. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2016, (06): : 100 - 103
  • [3] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    A. S. V. Ravi Kanth
    Neetu Garg
    [J]. The European Physical Journal Plus, 134
  • [4] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    Kanth, A. S. V. Ravi
    Garg, Neetu
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [5] Numerical methods for solving the multi-term time-fractional wave-diffusion equation
    Liu, Fawang
    Meerschaert, Mark M.
    McGough, Robert J.
    Zhuang, Pinghui
    Liu, Qingxia
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) : 9 - 25
  • [6] Numerical methods for solving the multi-term time-fractional wave-diffusion equation
    Fawang Liu
    Mark M. Meerschaert
    Robert J. McGough
    Pinghui Zhuang
    Qingxia Liu
    [J]. Fractional Calculus and Applied Analysis, 2013, 16 : 9 - 25
  • [7] Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation
    Luchko, Yury
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (02) : 538 - 548
  • [8] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Y. S. Li
    L. L. Sun
    Z. Q. Zhang
    T. Wei
    [J]. Numerical Algorithms, 2019, 82 : 1279 - 1301
  • [9] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Li, Y. S.
    Sun, L. L.
    Zhang, Z. Q.
    Wei, T.
    [J]. NUMERICAL ALGORITHMS, 2019, 82 (04) : 1279 - 1301
  • [10] The Galerkin finite element method for a multi-term time-fractional diffusion equation
    Jin, Bangti
    Lazarov, Raytcho
    Liu, Yikan
    Zhou, Zhi
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 825 - 843