Numerical Inversion for the Initial Distribution in the Multi-Term Time-Fractional Diffusion Equation Using Final Observations

被引:6
|
作者
Sun, Chunlong [1 ,2 ]
Li, Gongsheng [1 ]
Jia, Xianzheng [1 ]
机构
[1] Shandong Univ Technol, Sch Sci, Zibo 255049, Shandong, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-term time-fractional diffusion; multivariate Mittag-Leffler function; backward problem; ill-posedness; numerical inversion; BOUNDARY-VALUE-PROBLEMS; TRANSPORT;
D O I
10.4208/aamm.OA-2016-0170
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with numerical inversion for the initial distribution in the multi-term time-fractional diffusion equation using final observations. The inversion problem is of instability, but it is uniquely solvable based on the solution's expression for the forward problem and estimation to the multivariate Mittag-Leffler function. From view point of optimality, solving the inversion problem is transformed to minimizing a cost functional, and existence of a minimum is proved by the weakly lower semi-continuity of the functional. Furthermore, the homotopy regularization algorithm is introduced based on the minimization problem to perform numerical inversions, and the inversion solutions with noisy data give good approximations to the exact initial distribution demonstrating the efficiency of the inversion algorithm.
引用
收藏
页码:1525 / 1546
页数:22
相关论文
共 50 条
  • [21] Using Complete Monotonicity to Deduce Local Error Estimates for Discretisations of a Multi-Term Time-Fractional Diffusion Equation
    Chen, Hu
    Stynes, Martin
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (01) : 15 - 29
  • [22] Simultaneous Recovery of Two Time-Dependent Coefficients in a Multi-Term Time-Fractional Diffusion Equation
    Ma, Wenjun
    Sun, Liangliang
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (01) : 59 - 83
  • [23] Efficient Numerical Solution of the Multi-Term Time Fractional Diffusion-Wave Equation
    Ren, Jincheng
    Sun, Zhi-Zhong
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2015, 5 (01) : 1 - 28
  • [24] STOCHASTIC MODEL FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS WITH NOISE
    Hosseini, Vahid Reza
    Remazani, Mohamad
    Zou, Wennan
    Banihashemi, Seddigheh
    [J]. THERMAL SCIENCE, 2021, 25 (SpecialIssue 2): : S287 - S293
  • [25] Initial boundary value problems for a multi-term time fractional diffusion equation with generalized fractional derivatives in time
    Zhou, Shuang-Shuang
    Rashid, Saima
    Rauf, Asia
    Kubra, Khadija Tul
    Alsharif, Abdullah M.
    [J]. AIMS MATHEMATICS, 2021, 6 (11): : 12114 - 12132
  • [26] A numerical treatment of the two-dimensional multi-term time-fractional mixed sub-diffusion and diffusion-wave equation
    Ezz-Eldien, S. S.
    Doha, E. H.
    Wang, Y.
    Cai, W.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 91
  • [27] FRACTIONAL TIKHONOV REGULARIZATION METHOD FOR SIMULTANEOUS INVERSION OF THE SOURCE TERM AND INITIAL DATA IN A TIME-FRACTIONAL DIFFUSION EQUATION
    Wen, Jin
    Yue, Chong-Wang
    Liu, Zhuan-Xia
    Wang, Shi-Juan
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (01) : 249 - 273
  • [28] Galerkin spectral method for a multi-term time-fractional diffusion equation and an application to inverse source problem
    Sun, L. L.
    Chang, M. L.
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (01) : 212 - 243
  • [29] Stability and convergence of difference schemes for the multi-term time-fractional diffusion equation with generalized memory kernels
    Khibiev, A. K.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2019, 23 (03): : 582 - 597
  • [30] Generic Well-posedness for an Inverse Source Problem for a Multi-term Time-fractional Diffusion Equation
    Li, Zhiyuan
    Cheng, Xing
    Liu, Yikan
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (04): : 1005 - 1020