Optimization Approaches for Nonlinear State Space Models

被引:0
|
作者
Schussler, Max [1 ]
Nelles, Oliver [1 ]
机构
[1] Univ Siegen, Res Grp Automat Control Mechatron, D-57076 Siegen, Germany
关键词
SYSTEM-IDENTIFICATION;
D O I
10.23919/ACC50511.2021.9483428
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Local Model State Space Network (LMSSN) is a recently developed black box algorithm in nonlinear system identification. It has proven to be an appropriate tool on benchmark problems as well as for real-world processes. A severe shortcoming though is the long computation time that is necessary for model training. Therefore, a different optimization strategy, the adaptive moment estimation (ADAM) method with mini batches is used for the LMSSN and compared to the current Quasi-Newton (QN) optimization method. It is shown on a numerical Hammerstein example and on a well known Wiener-Hammerstein benchmark that the use of ADAM and mini batches does not limit the performance of the LMSSN algorithm and speeds up the nonlinear optimization per investigated split by more than 30 times. The price to be paid, however, is higher parameter variance (less interpretability) and more tedious hyperparameter tuning.
引用
收藏
页码:3933 / 3938
页数:6
相关论文
共 50 条
  • [31] Estimation methods for nonlinear state-space models in ecology
    Pedersen, M. W.
    Berg, C. W.
    Thygesen, U. H.
    Nielsen, A.
    Madsen, H.
    ECOLOGICAL MODELLING, 2011, 222 (08) : 1394 - 1400
  • [32] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [33] Sensitivity models for nonlinear filters with application to recursive parameter estimation for nonlinear state-space models
    Bohn, C
    Unbehauen, H
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2001, 148 (02): : 137 - 145
  • [34] Two approaches for state space realization of NARMA models:: Bridging the gap
    Kotta, Ü
    Sadegh, N
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2002, 8 (01) : 21 - 32
  • [35] Product optimization and control in the latent variable space of nonlinear PLS models
    Yacoub, F
    MacGregor, JF
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2004, 70 (01) : 63 - 74
  • [36] Identification of Nonlinear State-Space Models Using Joint State Particle Smoothing
    Geng Li-Hui
    Brett, Ninness
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 2166 - 2170
  • [37] Dynamic state estimation in nonlinear stiff systems using implicit state space models
    Nisha, A. S.
    Manohar, C. S.
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (07):
  • [38] Efficient Bayesian Inference for Nonlinear State Space Models With Univariate Autoregressive State Equation
    Kreuzer, Alexander
    Czado, Claudia
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (03) : 523 - 534
  • [39] Further results on "System identification of nonlinear state-space models"
    Liu, Xin
    Lou, Sicheng
    Dai, Wei
    AUTOMATICA, 2023, 148
  • [40] Learning nonlinear state-space models using deep autoencoders
    Masti, Daniele
    Bemporad, Alberto
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3862 - 3867