Optimization Approaches for Nonlinear State Space Models

被引:0
|
作者
Schussler, Max [1 ]
Nelles, Oliver [1 ]
机构
[1] Univ Siegen, Res Grp Automat Control Mechatron, D-57076 Siegen, Germany
关键词
SYSTEM-IDENTIFICATION;
D O I
10.23919/ACC50511.2021.9483428
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Local Model State Space Network (LMSSN) is a recently developed black box algorithm in nonlinear system identification. It has proven to be an appropriate tool on benchmark problems as well as for real-world processes. A severe shortcoming though is the long computation time that is necessary for model training. Therefore, a different optimization strategy, the adaptive moment estimation (ADAM) method with mini batches is used for the LMSSN and compared to the current Quasi-Newton (QN) optimization method. It is shown on a numerical Hammerstein example and on a well known Wiener-Hammerstein benchmark that the use of ADAM and mini batches does not limit the performance of the LMSSN algorithm and speeds up the nonlinear optimization per investigated split by more than 30 times. The price to be paid, however, is higher parameter variance (less interpretability) and more tedious hyperparameter tuning.
引用
收藏
页码:3933 / 3938
页数:6
相关论文
共 50 条
  • [21] Decoupling Multivariate Polynomials for Nonlinear State-Space Models
    Decuyper, Jan
    Dreesen, Philippe
    Schoukens, Johan
    Runacres, Mark C.
    Tiels, Koen
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 745 - 750
  • [22] Decoupling nonlinear state-space models: case studies
    Dreesen, Philippe
    Esfahani, Alireza Fakhrizadeh
    Stoev, Julian
    Tiels, Koen
    Schoukens, Johan
    PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 2639 - 2646
  • [23] Learning nonlinear state-space models using autoencoders
    Masti, Daniele
    Bemporad, Alberto
    AUTOMATICA, 2021, 129
  • [24] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    AUTOMATICA, 2023, 147
  • [25] Alternative EM Algorithms for Nonlinear State-space Models
    Wahlstrom, Johan
    Jalden, Joakim
    Skog, Isaac
    Handel, Peter
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1260 - 1267
  • [26] Identification of Mixed Linear/Nonlinear State-Space Models
    Lindsten, Fredrik
    Schon, Thomas B.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6377 - 6382
  • [27] Robust identification approach for nonlinear state-space models
    Liu, Xin
    Yang, Xianqiang
    NEUROCOMPUTING, 2019, 333 : 329 - 338
  • [28] Parallel distributed estimation for polynomial nonlinear state space models
    Jian-hong W.
    Yan-xiang W.
    International Journal of Dynamics and Control, 2020, 8 (04) : 1169 - 1180
  • [29] Local Model Networks for the Identification of Nonlinear State Space Models
    Schuessler, Max
    Muenker, Tobias
    Nelles, Oliver
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6437 - 6442
  • [30] Bayes factor estimation for nonlinear dynamic state space models
    Vila, Jean-Pierre
    Saley, Issa
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (7-8) : 429 - 434