Optimization Approaches for Nonlinear State Space Models

被引:0
|
作者
Schussler, Max [1 ]
Nelles, Oliver [1 ]
机构
[1] Univ Siegen, Res Grp Automat Control Mechatron, D-57076 Siegen, Germany
关键词
SYSTEM-IDENTIFICATION;
D O I
10.23919/ACC50511.2021.9483428
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Local Model State Space Network (LMSSN) is a recently developed black box algorithm in nonlinear system identification. It has proven to be an appropriate tool on benchmark problems as well as for real-world processes. A severe shortcoming though is the long computation time that is necessary for model training. Therefore, a different optimization strategy, the adaptive moment estimation (ADAM) method with mini batches is used for the LMSSN and compared to the current Quasi-Newton (QN) optimization method. It is shown on a numerical Hammerstein example and on a well known Wiener-Hammerstein benchmark that the use of ADAM and mini batches does not limit the performance of the LMSSN algorithm and speeds up the nonlinear optimization per investigated split by more than 30 times. The price to be paid, however, is higher parameter variance (less interpretability) and more tedious hyperparameter tuning.
引用
收藏
页码:3933 / 3938
页数:6
相关论文
共 50 条
  • [41] Estimation of stochastic volatility models: An approximation to the nonlinear state space representation
    Shimada, J
    Tsukuda, Y
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2005, 34 (02) : 429 - 450
  • [42] Nonlinear Regime-Switching State-Space (RSSS) Models
    Sy-Miin Chow
    Guangjian Zhang
    Psychometrika, 2013, 78 : 740 - 768
  • [43] Nonlinear Regime-Switching State-Space (RSSS) Models
    Chow, Sy-Miin
    Zhang, Guangjian
    PSYCHOMETRIKA, 2013, 78 (04) : 740 - 768
  • [44] Separate Initialization of Dynamics and Nonlinearities in Nonlinear State-Space Models
    Marconato, Anna
    Sjoeberg, Jonas
    Suykens, Johan
    Schoukens, Johan
    2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 2104 - 2108
  • [45] Parameter identification for nonlinear models from a state-space approach
    Matz, Jules
    Birouche, Abderazik
    Mourllion, Benjamin
    Bouziani, Fethi
    Basset, Michel
    IFAC PAPERSONLINE, 2020, 53 (02): : 13910 - 13915
  • [46] Adaptive estimation of FCG using nonlinear state-space models
    Moussas, VC
    Katsikas, SK
    Lainiotis, DG
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (04) : 705 - 722
  • [47] Exploiting Chaos in Learning System Identification for Nonlinear State Space Models
    Mehmet Ölmez
    Cüneyt Güzeliş
    Neural Processing Letters, 2015, 41 : 29 - 41
  • [48] Discrete Time Approximation of Continuous Time Nonlinear State Space Models
    Schoukens, J.
    Relan, R.
    Schoukens, M.
    IFAC PAPERSONLINE, 2017, 50 (01): : 8339 - 8346
  • [49] Exploiting Chaos in Learning System Identification for Nonlinear State Space Models
    Olmez, Mehmet
    Guzelis, Cuneyt
    NEURAL PROCESSING LETTERS, 2015, 41 (01) : 29 - 41