Further results on "System identification of nonlinear state-space models"

被引:32
|
作者
Liu, Xin [1 ,2 ]
Lou, Sicheng [3 ]
Dai, Wei [1 ,2 ]
机构
[1] China Univ Min & Technol, Artificial Intelligence Res Inst, Xuzhou 221116, Peoples R China
[2] China Univ Min Technol, Engn Res Ctr Intelligent Control Underground Space, Minist Educ, Xuzhou 221116, Peoples R China
[3] Hohai Univ, Coll IoT Engn, Changzhou 213022, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear state-space models; Robust system identification; Student's t-distribution; Particle methods;
D O I
10.1016/j.automatica.2022.110760
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note presents some further results concerning the identification of the nonlinear state-space model (NSSM) based on the meaningful conclusions in the above paper. We use the heavy-tailed Student's t-distribution to model the system noises and the parameter estimation problem is solved via the expectation maximization (EM) algorithm wherein the decomposition of t-distribution as well as the particle smoother is applied, then a robust identification strategy is proposed. By using the mathematical decomposition of t-distribution, two major advantages are brought: (1) It facilitates the calculation of the desired Q-function efficiently; (2) It allows a more clear and evident explanation of the robustness of the proposed identification strategy. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] System identification of nonlinear state-space models
    Schon, Thomas B.
    Wills, Adrian
    Ninness, Brett
    AUTOMATICA, 2011, 47 (01) : 39 - 49
  • [2] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    AUTOMATICA, 2023, 147
  • [3] Robust identification approach for nonlinear state-space models
    Liu, Xin
    Yang, Xianqiang
    NEUROCOMPUTING, 2019, 333 : 329 - 338
  • [4] Identification of Mixed Linear/Nonlinear State-Space Models
    Lindsten, Fredrik
    Schon, Thomas B.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6377 - 6382
  • [5] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [6] Parameter identification for nonlinear models from a state-space approach
    Matz, Jules
    Birouche, Abderazik
    Mourllion, Benjamin
    Bouziani, Fethi
    Basset, Michel
    IFAC PAPERSONLINE, 2020, 53 (02): : 13910 - 13915
  • [7] Robust Optimization Method for the Identification of Nonlinear State-Space Models
    Van Mulders, Anne
    Vanbeylen, Laurent
    Schoukens, Johan
    2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 1423 - 1428
  • [8] Review of the application of modeling and estimation method in system identification for nonlinear state-space models
    Li, Xiaonan
    Ma, Ping
    Chao, Tao
    Yang, Ming
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2024, 15 (05)
  • [9] Identification of Nonlinear State-Space Models Using Joint State Particle Smoothing
    Geng Li-Hui
    Brett, Ninness
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 2166 - 2170
  • [10] Nonlinear state-space system identification with robust laplace model
    Liu, Xin
    Yang, Xianqiang
    Liu, Xiaofeng
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (06) : 1492 - 1501