Further results on "System identification of nonlinear state-space models"

被引:32
|
作者
Liu, Xin [1 ,2 ]
Lou, Sicheng [3 ]
Dai, Wei [1 ,2 ]
机构
[1] China Univ Min & Technol, Artificial Intelligence Res Inst, Xuzhou 221116, Peoples R China
[2] China Univ Min Technol, Engn Res Ctr Intelligent Control Underground Space, Minist Educ, Xuzhou 221116, Peoples R China
[3] Hohai Univ, Coll IoT Engn, Changzhou 213022, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear state-space models; Robust system identification; Student's t-distribution; Particle methods;
D O I
10.1016/j.automatica.2022.110760
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note presents some further results concerning the identification of the nonlinear state-space model (NSSM) based on the meaningful conclusions in the above paper. We use the heavy-tailed Student's t-distribution to model the system noises and the parameter estimation problem is solved via the expectation maximization (EM) algorithm wherein the decomposition of t-distribution as well as the particle smoother is applied, then a robust identification strategy is proposed. By using the mathematical decomposition of t-distribution, two major advantages are brought: (1) It facilitates the calculation of the desired Q-function efficiently; (2) It allows a more clear and evident explanation of the robustness of the proposed identification strategy. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Parameter reduction in nonlinear state-space identification of hysteresis
    Esfahani, Alireza Fakhrizadeh
    Dreesen, Philippe
    Tiels, Koen
    Noel, Jean-Philippe
    Schoukens, Johan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 104 : 884 - 895
  • [42] Identification of nonlinear dynamic systems described by Hammerstein state-space models with discontinuous nonlinearities
    Salhi H.
    Kamoun S.
    International Journal of Engineering Systems Modelling and Simulation, 2017, 9 (03) : 127 - 135
  • [43] On Variational Bayes for Identification of Nonlinear State-space Models with Linearly Dependent Unknown Parameters
    Taniguchi, Akihiro
    Fujimoto, Kenji
    Nishida, Yoshiharu
    2017 56TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2017, : 572 - 576
  • [44] Identification of Countercurrent Rare Earth Extraction Process based on Nonlinear State-space Models
    Zhong, Lusheng
    Fan, Xiaoping
    Yang, Hui
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 131 - 136
  • [45] Parameter estimation in a class of nonlinear state-space models
    Enescu, Mihai
    Koivunen, Visa
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 193 - 196
  • [46] Decoupling Multivariate Polynomials for Nonlinear State-Space Models
    Decuyper, Jan
    Dreesen, Philippe
    Schoukens, Johan
    Runacres, Mark C.
    Tiels, Koen
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 745 - 750
  • [47] State-space nonlinear process modeling: Identification and universality
    Sentoni, GB
    Biegler, LT
    Guiver, JB
    Zhao, H
    AICHE JOURNAL, 1998, 44 (10) : 2229 - 2239
  • [48] Alternative EM Algorithms for Nonlinear State-space Models
    Wahlstrom, Johan
    Jalden, Joakim
    Skog, Isaac
    Handel, Peter
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1260 - 1267
  • [49] Estimation methods for nonlinear state-space models in ecology
    Pedersen, M. W.
    Berg, C. W.
    Thygesen, U. H.
    Nielsen, A.
    Madsen, H.
    ECOLOGICAL MODELLING, 2011, 222 (08) : 1394 - 1400
  • [50] System Identification of Bilinear State-space Models by Modified Gradient Search Method
    Zhong Lusheng
    Fan Xiaoping
    Yang Hui
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 1282 - 1286