Parameter reduction in nonlinear state-space identification of hysteresis

被引:24
|
作者
Esfahani, Alireza Fakhrizadeh [1 ]
Dreesen, Philippe [1 ]
Tiels, Koen [1 ]
Noel, Jean-Philippe [1 ,2 ]
Schoukens, Johan [1 ]
机构
[1] Vrije Univ Brussel, Dept ELEC, Pl Laan 2,Bldg K,6th Floor, B-1050 Brussels, Belgium
[2] Univ Liege, Aerosp & Mech Engn Dept, Space Struct & Syst Lab, Liege, Belgium
基金
欧洲研究理事会;
关键词
Polynomial nonlinear state-space; Hysteretic system; Bouc-Wen; Tensor decomposition; Canonical polyadic decomposition; Decoupling multivariate polynomials; SYSTEMS; MODEL; INITIALIZATION;
D O I
10.1016/j.ymssp.2017.10.017
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Recent work on black-box polynomial nonlinear state-space modeling for hysteresis identification has provided promising results, but struggles with a large number of parameters due to the use of multivariate polynomials. This drawback is tackled in the current paper by applying a decoupling approach that results in a more parsimonious representation involving univariate polynomials. This work is carried out numerically on input-output data generated by a Bouc-Wen hysteretic model and follows up on earlier work of the authors. The current article discusses the polynomial decoupling approach and explores the selection of the number of univariate polynomials with the polynomial degree. We have found that the presented decoupling approach is able to reduce the number of parameters of the full nonlinear model up to about 50%, while maintaining a comparable output error level. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:884 / 895
页数:12
相关论文
共 50 条
  • [1] A nonlinear state-space approach to hysteresis identification
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 : 171 - 184
  • [2] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    [J]. NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [3] Parameter identification for nonlinear models from a state-space approach
    Matz, Jules
    Birouche, Abderazik
    Mourllion, Benjamin
    Bouziani, Fethi
    Basset, Michel
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 13910 - 13915
  • [4] Parameter bounding identification for state-space systems
    Spathopoulos, MP
    Grobov, ID
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1997, 67 (05) : 745 - 765
  • [5] State-space identification of nonlinear flight dynamics
    Lyshevski, SE
    [J]. PROCEEDINGS OF THE 1997 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 1997, : 496 - 498
  • [6] System identification of nonlinear state-space models
    Schon, Thomas B.
    Wills, Adrian
    Ninness, Brett
    [J]. AUTOMATICA, 2011, 47 (01) : 39 - 49
  • [7] Parameter estimation in a class of nonlinear state-space models
    Enescu, Mihai
    Koivunen, Visa
    [J]. 2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 193 - 196
  • [8] State-space parameter identification in a second control laboratory
    Basilio, JC
    Moreira, MV
    [J]. IEEE TRANSACTIONS ON EDUCATION, 2004, 47 (02) : 204 - 210
  • [9] A MODIFIED PARAMETER-IDENTIFICATION ALGORITHM IN STATE-SPACE
    NAGAR, SK
    NAGARAJA, T
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 1981, 8 (02) : 103 - 107
  • [10] The Application of EKF in Parameter Identification of State-space Model
    Zhang, Jing
    Zhou, Zuo
    Huang, Xiaona
    [J]. 2018 EIGHTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2018), 2018, : 798 - 802