A nonlinear state-space approach to hysteresis identification

被引:57
|
作者
Noel, J. P. [1 ,2 ]
Esfahani, A. F. [1 ]
Kerschen, G. [2 ]
Schoukens, J. [1 ]
机构
[1] Vrije Univ Brussel, Dept ELEC, Pl Laan 2, B-1050 Brussels, Belgium
[2] Univ Liege, Space Struct & Syst Lab, Aerosp & Mech Engn Dept, Liege, Belgium
关键词
Hysteresis; Dynamic nonlinearity; Nonlinear system identification; Black-box method; State-space models; SYSTEM-IDENTIFICATION; DISTORTIONS; MODEL; EXCITATIONS; ALGORITHM; BEHAVIOR;
D O I
10.1016/j.ymssp.2016.08.025
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Most studies tackling hysteresis identification in the technical literature follow white-box approaches, i.e. they rely on the assumption that measured data obey a specific hysteretic model. Such an assumption may be a hard requirement to handle in real applications, since hysteresis is a highly individualistic nonlinear behaviour. The present paper adopts a black-box approach based on nonlinear state-space models to identify hysteresis dynamics. This approach is shown to provide a general framework to hysteresis identification, featuring flexibility and parsimony of representation. Nonlinear model terms are constructed as a multivariate polynomial in the state variables, and parameter estimation is performed by minimising weighted least-squares cost functions. Technical issues, including the selection of the model order and the polynomial degree, are discussed, and model validation is achieved in both broadband and sine conditions. The study is carried out numerically by exploiting synthetic data generated via the Bouc-Wen equations. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:171 / 184
页数:14
相关论文
共 50 条
  • [1] Parameter reduction in nonlinear state-space identification of hysteresis
    Esfahani, Alireza Fakhrizadeh
    Dreesen, Philippe
    Tiels, Koen
    Noel, Jean-Philippe
    Schoukens, Johan
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 104 : 884 - 895
  • [2] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    [J]. NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [3] Robust identification approach for nonlinear state-space models
    Liu, Xin
    Yang, Xianqiang
    [J]. NEUROCOMPUTING, 2019, 333 : 329 - 338
  • [4] A Sparse Bayesian Approach to the Identification of Nonlinear State-Space Systems
    Pan, Wei
    Yuan, Ye
    Goncalves, Jorge
    Stan, Guy-Bart
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (01) : 182 - 187
  • [5] Parameter identification for nonlinear models from a state-space approach
    Matz, Jules
    Birouche, Abderazik
    Mourllion, Benjamin
    Bouziani, Fethi
    Basset, Michel
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 13910 - 13915
  • [6] Initialization Approach for Nonlinear State-Space Identification via the Subspace Encoder Approach
    Ramkannan, Rishi
    Beintema, Gerben I.
    Toth, Roland
    Schoukens, Maarten
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 5146 - 5151
  • [7] State-space identification of nonlinear flight dynamics
    Lyshevski, SE
    [J]. PROCEEDINGS OF THE 1997 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 1997, : 496 - 498
  • [8] System identification of nonlinear state-space models
    Schon, Thomas B.
    Wills, Adrian
    Ninness, Brett
    [J]. AUTOMATICA, 2011, 47 (01) : 39 - 49
  • [9] Identification of structured nonlinear state-space models for hysteretic systems using neural network hysteresis operators
    Krikelis, Konstantinos
    Pei, Jin-Song
    van Berkel, Koos
    Schoukens, Maarten
    [J]. MEASUREMENT, 2024, 224
  • [10] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    [J]. AUTOMATICA, 2023, 147