System identification of nonlinear state-space models

被引:409
|
作者
Schon, Thomas B. [1 ]
Wills, Adrian [2 ]
Ninness, Brett [2 ]
机构
[1] Linkoping Univ, Div Automat Control, SE-58183 Linkoping, Sweden
[2] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
基金
瑞典研究理事会; 澳大利亚研究理事会;
关键词
System identification; Nonlinear models; Dynamic systems; Monte Carlo method; Smoothing filters; Expectation maximisation algorithm; Particle methods; PARAMETER-ESTIMATION; MAXIMUM-LIKELIHOOD; PARTICLE METHODS;
D O I
10.1016/j.automatica.2010.10.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the parameter estimation of a general class of nonlinear dynamic systems in state-space form. More specifically, a Maximum Likelihood (ML) framework is employed and an Expectation Maximisation (EM) algorithm is derived to compute these ML estimates. The Expectation (E) step involves solving a nonlinear state estimation problem, where the smoothed estimates of the states are required. This problem lends itself perfectly to the particle smoother, which provides arbitrarily good estimates. The maximisation (M) step is solved using standard techniques from numerical optimisation theory. Simulation examples demonstrate the efficacy of our proposed solution. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:39 / 49
页数:11
相关论文
共 50 条
  • [1] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    [J]. AUTOMATICA, 2023, 147
  • [2] Further results on "System identification of nonlinear state-space models"
    Liu, Xin
    Lou, Sicheng
    Dai, Wei
    [J]. AUTOMATICA, 2023, 148
  • [3] Robust identification approach for nonlinear state-space models
    Liu, Xin
    Yang, Xianqiang
    [J]. NEUROCOMPUTING, 2019, 333 : 329 - 338
  • [4] Identification of Mixed Linear/Nonlinear State-Space Models
    Lindsten, Fredrik
    Schon, Thomas B.
    [J]. 49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6377 - 6382
  • [5] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    [J]. NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [6] Parameter identification for nonlinear models from a state-space approach
    Matz, Jules
    Birouche, Abderazik
    Mourllion, Benjamin
    Bouziani, Fethi
    Basset, Michel
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 13910 - 13915
  • [7] Robust Optimization Method for the Identification of Nonlinear State-Space Models
    Van Mulders, Anne
    Vanbeylen, Laurent
    Schoukens, Johan
    [J]. 2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 1423 - 1428
  • [8] Review of the application of modeling and estimation method in system identification for nonlinear state-space models
    Li, Xiaonan
    Ma, Ping
    Chao, Tao
    Yang, Ming
    [J]. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2024, 15 (05)
  • [9] Identification of Nonlinear State-Space Models Using Joint State Particle Smoothing
    Geng Li-Hui
    Brett, Ninness
    [J]. PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 2166 - 2170
  • [10] Nonlinear state-space system identification with robust laplace model
    Liu, Xin
    Yang, Xianqiang
    Liu, Xiaofeng
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (06) : 1492 - 1501