System identification of nonlinear state-space models

被引:418
|
作者
Schon, Thomas B. [1 ]
Wills, Adrian [2 ]
Ninness, Brett [2 ]
机构
[1] Linkoping Univ, Div Automat Control, SE-58183 Linkoping, Sweden
[2] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
基金
澳大利亚研究理事会; 瑞典研究理事会;
关键词
System identification; Nonlinear models; Dynamic systems; Monte Carlo method; Smoothing filters; Expectation maximisation algorithm; Particle methods; PARAMETER-ESTIMATION; MAXIMUM-LIKELIHOOD; PARTICLE METHODS;
D O I
10.1016/j.automatica.2010.10.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the parameter estimation of a general class of nonlinear dynamic systems in state-space form. More specifically, a Maximum Likelihood (ML) framework is employed and an Expectation Maximisation (EM) algorithm is derived to compute these ML estimates. The Expectation (E) step involves solving a nonlinear state estimation problem, where the smoothed estimates of the states are required. This problem lends itself perfectly to the particle smoother, which provides arbitrarily good estimates. The maximisation (M) step is solved using standard techniques from numerical optimisation theory. Simulation examples demonstrate the efficacy of our proposed solution. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:39 / 49
页数:11
相关论文
共 50 条
  • [31] Nonlinear state-space models with state-dependent variances
    Stroud, JR
    Müller, P
    Polson, NG
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) : 377 - 386
  • [32] State inference in variational Bayesian nonlinear state-space models
    Raiko, T
    Tornio, M
    Honkela, A
    Karhunen, J
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 222 - 229
  • [33] Gaussian Variational State Estimation for Nonlinear State-Space Models
    Courts, Jarrad
    Wills, Adrian
    Schon, Thomas
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5979 - 5993
  • [34] Robust identification of nonlinear time-delay system in state-space form
    Liu, Xin
    Yang, Xianqiang
    Zhu, Pengbo
    Xiong, Weili
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (16): : 9953 - 9971
  • [35] NONLINEAR-SYSTEM IDENTIFICATION USING NEURAL STATE-SPACE MODELS, APPLICABLE TO ROBUST-CONTROL DESIGN
    SUYKENS, JAK
    DEMOOR, BLR
    VANDEWALLE, J
    INTERNATIONAL JOURNAL OF CONTROL, 1995, 62 (01) : 129 - 152
  • [36] Online non-affine nonlinear system identification based on state-space neuro-fuzzy models
    Gil, P.
    Oliveira, T.
    Palma, L. Brito
    SOFT COMPUTING, 2019, 23 (16) : 7425 - 7438
  • [37] Online non-affine nonlinear system identification based on state-space neuro-fuzzy models
    P. Gil
    T. Oliveira
    L. Brito Palma
    Soft Computing, 2019, 23 : 7425 - 7438
  • [38] Decoupling nonlinear state-space models: case studies
    Dreesen, Philippe
    Esfahani, Alireza Fakhrizadeh
    Stoev, Julian
    Tiels, Koen
    Schoukens, Johan
    PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 2639 - 2646
  • [39] Learning nonlinear state-space models using autoencoders
    Masti, Daniele
    Bemporad, Alberto
    AUTOMATICA, 2021, 129
  • [40] Identification of nonlinear dynamic systems as a composition of local linear parametric or state-space models
    Babuska, R
    Keizer, J
    Verhaegen, M
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 675 - 680