Further results on "System identification of nonlinear state-space models"

被引:32
|
作者
Liu, Xin [1 ,2 ]
Lou, Sicheng [3 ]
Dai, Wei [1 ,2 ]
机构
[1] China Univ Min & Technol, Artificial Intelligence Res Inst, Xuzhou 221116, Peoples R China
[2] China Univ Min Technol, Engn Res Ctr Intelligent Control Underground Space, Minist Educ, Xuzhou 221116, Peoples R China
[3] Hohai Univ, Coll IoT Engn, Changzhou 213022, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear state-space models; Robust system identification; Student's t-distribution; Particle methods;
D O I
10.1016/j.automatica.2022.110760
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note presents some further results concerning the identification of the nonlinear state-space model (NSSM) based on the meaningful conclusions in the above paper. We use the heavy-tailed Student's t-distribution to model the system noises and the parameter estimation problem is solved via the expectation maximization (EM) algorithm wherein the decomposition of t-distribution as well as the particle smoother is applied, then a robust identification strategy is proposed. By using the mathematical decomposition of t-distribution, two major advantages are brought: (1) It facilitates the calculation of the desired Q-function efficiently; (2) It allows a more clear and evident explanation of the robustness of the proposed identification strategy. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Nonlinear state-space models with state-dependent variances
    Stroud, JR
    Müller, P
    Polson, NG
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) : 377 - 386
  • [32] State inference in variational Bayesian nonlinear state-space models
    Raiko, T
    Tornio, M
    Honkela, A
    Karhunen, J
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 222 - 229
  • [33] Gaussian Variational State Estimation for Nonlinear State-Space Models
    Courts, Jarrad
    Wills, Adrian
    Schon, Thomas
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5979 - 5993
  • [34] Robust identification of nonlinear time-delay system in state-space form
    Liu, Xin
    Yang, Xianqiang
    Zhu, Pengbo
    Xiong, Weili
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (16): : 9953 - 9971
  • [35] NONLINEAR-SYSTEM IDENTIFICATION USING NEURAL STATE-SPACE MODELS, APPLICABLE TO ROBUST-CONTROL DESIGN
    SUYKENS, JAK
    DEMOOR, BLR
    VANDEWALLE, J
    INTERNATIONAL JOURNAL OF CONTROL, 1995, 62 (01) : 129 - 152
  • [36] Online non-affine nonlinear system identification based on state-space neuro-fuzzy models
    Gil, P.
    Oliveira, T.
    Palma, L. Brito
    SOFT COMPUTING, 2019, 23 (16) : 7425 - 7438
  • [37] Online non-affine nonlinear system identification based on state-space neuro-fuzzy models
    P. Gil
    T. Oliveira
    L. Brito Palma
    Soft Computing, 2019, 23 : 7425 - 7438
  • [38] Decoupling nonlinear state-space models: case studies
    Dreesen, Philippe
    Esfahani, Alireza Fakhrizadeh
    Stoev, Julian
    Tiels, Koen
    Schoukens, Johan
    PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 2639 - 2646
  • [39] Learning nonlinear state-space models using autoencoders
    Masti, Daniele
    Bemporad, Alberto
    AUTOMATICA, 2021, 129
  • [40] Identification of nonlinear dynamic systems as a composition of local linear parametric or state-space models
    Babuska, R
    Keizer, J
    Verhaegen, M
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 675 - 680