A PHYSICS-BASED DYNAMIC MODEL FOR BOILERS, PART 1: MODEL DEVELOPMENT AND VALIDATION

被引:0
|
作者
Blom, Matthew J. [1 ]
Brear, Michael J. [1 ]
Manzie, Chris [1 ]
Wiese, Ashley P. [1 ]
机构
[1] Univ Melbourne, Dept Mech Engn, Parkville, Vic 3010, Australia
关键词
PREDICTIVE CONTROL;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper is the first part of a two part study that develops, validates and integrates a one-dimensional, physics-based, dynamic boiler model suitable for application with model based control. Part 1 of this study extends and validates the existing, higher order modelling framework of Badmus et. al. [1] to boilers. This requires derivation of particular, one-dimensional forms of the equations for heat, mass and momentum transfer in single (liquid and gas) phase and two phase fluids with real fluid properties. The so-called 'forcing term' mapping functions in these equations only require knowledge of steady state system behaviour, and so can be obtained from steady state measurements throughout the boiler system. Additional models are also presented for other boiler components, including the steam drum in sub-critical boilers. The overall framework is then used to develop and validate a model of a GW scale, sub-critical boiler in an operating,. electrical power plant. Overall, the model achieves reasonable agreement with the power plant dynamics during normal transient operations, including acceptable tracking of the drum dynamics and the steam at the boiler outlet. As such, this modelling framework appears suitable for developing models of sufficient fidelity yet retain an appropriate form for model reduction using singular perturbation analysis techniques, as demonstrated in Part 2 [2] of this study.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A physics-based statistical model for nanoparticle deposition
    Sidnawi, Bchara
    Zhou, Dong
    Li, Bo
    Wu, Qianhong
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (06)
  • [32] Model Selection Among Physics-Based Models
    Hombal, V. K.
    Mahadevan, S.
    JOURNAL OF MECHANICAL DESIGN, 2013, 135 (02)
  • [33] A physics-based model for the substrate resistance of MOSFETs
    Gao, XF
    Liou, JJ
    Ortiz-Conde, A
    Bernier, J
    Croft, G
    SOLID-STATE ELECTRONICS, 2002, 46 (06) : 853 - 857
  • [34] Comprehensive Physics-Based Model for Millimeterwave Transistors
    Nouri, Soheil
    El-Ghazaly, Samir M.
    2021 IEEE RADIO AND WIRELESS SYMPOSIUM (RWS), 2021, : 29 - 31
  • [35] A PHYSICS-BASED LINK MODEL FOR TREE VIBRATIONS
    Murphy, Kevin D.
    Rudnicki, Mark
    AMERICAN JOURNAL OF BOTANY, 2012, 99 (12) : 1918 - 1929
  • [36] A new physics-based γ-kL transition model
    Juntasaro, Ekachai
    Ngiamsoongnirn, Kiattisak
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2014, 28 (05) : 204 - 218
  • [37] A physics-based MTO model for circuit simulation
    Bai, YM
    Huang, AQ
    PESC 2000: 31ST ANNUAL IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-3, 2000, : 251 - 257
  • [38] A model for physics-based fire simulation and analysis
    Xiaojing Zhou
    Ye Zhang
    Guohua Chen
    Minxue Zheng
    Virtual Reality, 2021, 25 : 421 - 432
  • [39] A Physics-Based RTN Variability Model for MOSFETs
    da Silva, Mauricio Banaszeski
    Tuinhout, Hans
    Zegers-van Duijnhoven, Adrie
    Wirth, Gilson I.
    Scholten, Andries
    2014 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2014,
  • [40] A model for physics-based fire simulation and analysis
    Zhou, Xiaojing
    Zhang, Ye
    Chen, Guohua
    Zheng, Minxue
    VIRTUAL REALITY, 2021, 25 (02) : 421 - 432