Theil-Sen nonparametric regression technique on univariate calibration, inverse regression and detection limits

被引:46
|
作者
Lavagnini, Irma [1 ]
Badocco, Denis [1 ]
Pastore, Paolo [1 ]
Magno, Franco [1 ]
机构
[1] Univ Padua, Dept Chem Sci, I-35131 Padua, Italy
关键词
Theil-Sen regression; Nonparametric confidence region; Tolerance intervals; Detection limit; LINEAR-REGRESSION; 3-MERCAPTOHEXYL ACETATE; ROBUST; INTERVALS; ERRORS; MODEL; WINE;
D O I
10.1016/j.talanta.2011.09.059
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper reports the combined use of the nonparametric Theil-Sen (TS) regression technique and of the statistics of Lancaster-Quade (LQ) concerning the linear regression parameters to solve typical analytical problems, like method comparison, calculation of the uncertainty in the inverse regression, determination of the detection limit. The results of this new approach are compared to those obtained with appropriate reference methods, using simulated and real data sets. The nonparametric Theil-Sen regression technique appears a new robust tool for the problems considered because it is free from restrictive statistical constraints, avoids searching for the error nature on x and y, which may require long analysis times, and it is easy to use. The only drawback is that the intrinsic nature of the method may lead to a possible enlargement of the uncertainty interval of the discriminated concentration and to the determination of larger detection limits than those obtainable with the commonly used, less robust, regression techniques. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:180 / 188
页数:9
相关论文
共 50 条
  • [21] Univariate calibration by reversed regression of heteroscedastic data: a case study
    Zeng, Qiaoling Charlene
    Zhang, Elizabeth
    Tellinghuisen, Joel
    [J]. ANALYST, 2008, 133 (12) : 1649 - 1655
  • [22] Direct instrumental nonparametric estimation of inverse regression functions
    Krief, Jerome M.
    [J]. JOURNAL OF ECONOMETRICS, 2017, 201 (01) : 95 - 107
  • [23] A PLUG-IN TECHNIQUE IN NONPARAMETRIC REGRESSION WITH DEPENDENCE
    DELRIO, AQ
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1994, 23 (09) : 2581 - 2603
  • [24] Nonparametric Rank Regression for Analyzing Water Quality Concentration Data with Multiple Detection Limits
    Fu, Liya
    Wang, You-Gan
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (04) : 1481 - 1489
  • [25] CLASSICAL AND INVERSE REGRESSION METHODS OF CALIBRATION IN EXTRAPOLATION
    KRUTCHKOFF, RG
    [J]. TECHNOMETRICS, 1969, 11 (03) : 605 - +
  • [26] A Constrained Regression Technique for COCOMO Calibration
    Nguyen, Vu
    Steece, Bert
    Boehm, Barry
    [J]. ESEM'08: PROCEEDINGS OF THE 2008 ACM-IEEE INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT, 2008, : 213 - +
  • [27] New approaches to nonparametric and semiparametric regression for univariate and multivariate group testing data
    Delaigle, A.
    Hall, P.
    Wishart, J. R.
    [J]. BIOMETRIKA, 2014, 101 (03) : 567 - 585
  • [28] A nonparametric procedure for changepoint detection in linear regression
    Sun, Jing
    Sakate, Deepak
    Mathur, Sunil
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (08) : 1925 - 1935
  • [29] Outlier Detection and Robust Estimation in Nonparametric Regression
    Kong, Dehan
    Bondell, Howard
    Shen, Weining
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [30] Kernel regression estimators for nonparametric model calibration in survey sampling
    Cadigan N.G.
    Chen J.
    [J]. Journal of Statistical Theory and Practice, 2010, 4 (1) : 1 - 25